What are the nursing assessment findings that could indicate a patient has type 1 diabetes?

Skip Nav Destination

Position Statements| November 24 2017

Diabetes Care 2018;41(Supplement_1):S28–S37

  • Split-Screen
  • Views Icon Views
    • Article contents
    • Figures & tables
    • Video
    • Audio
    • Supplementary Data
    • Peer Review
  • PDF

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

PATIENT-CENTERED COLLABORATIVE CARE

Recommendation

  • A patient-centered communication style that uses person-centered and strength-based language, active listening, elicits patient preferences and beliefs, and assesses literacy, numeracy, and potential barriers to care should be used to optimize patient health outcomes and health-related quality of life. B

A successful medical evaluation depends on beneficial interactions between the patient and the care team. The Chronic Care Model (1–3) (see Section 1 “Improving Care and Promoting Health in Populations”) is a patient-centered approach to care that requires a close working relationship between the patient and clinicians involved in treatment planning. People with diabetes should receive health care from an interdisciplinary team that may include physicians, nurse practitioners, physician assistants, nurses, dietitians, exercise specialists, pharmacists, dentists, podiatrists, and mental health professionals. Individuals with diabetes must assume an active role in their care. The patient, family or support persons, physician, and health care team should together formulate the management plan, which includes lifestyle management (see Section 4 “Lifestyle Management”).

Treatment goals and plans should be created with the patients based on their individual preferences, values, and goals. The management plan should take into account the patient’s age, cognitive abilities, school/work schedule and conditions, health beliefs, support systems, eating patterns, physical activity, social situation, financial concerns, cultural factors, literacy and numeracy (mathematical literacy), diabetes complications and duration of disease, comorbidities, health priorities, other medical conditions, preferences for care, and life expectancy. Various strategies and techniques should be used to support patients’ self-management efforts, including providing education on problem-solving skills for all aspects of diabetes management.

Provider communications with patients/families should acknowledge that multiple factors impact glycemic management, but also emphasize that collaboratively developed treatment plans and a healthy lifestyle can significantly improve disease outcomes and well-being (4–7). Thus, the goal of provider-patient communication is to establish a collaborative relationship and to assess and address self-management barriers without blaming patients for “noncompliance” or “nonadherence” when the outcomes of self-management are not optimal (8). The familiar terms “noncompliance” and “nonadherence” denote a passive, obedient role for a person with diabetes in “following doctor’s orders” that is at odds with the active role people with diabetes take in directing the day-to-day decision-making, planning, monitoring, evaluation, and problem-solving involved in diabetes self-management. Using a nonjudgmental approach that normalizes periodic lapses in self-management may help minimize patients’ resistance to reporting problems with self-management. Empathizing and using active listening techniques, such as open-ended questions, reflective statements, and summarizing what the patient said, can help facilitate communication. Patients’ perceptions about their own ability, or self-efficacy, to self-manage diabetes are one important psychosocial factor related to improved diabetes self-management and treatment outcomes in diabetes (9–13) and should be a target of ongoing assessment, patient education, and treatment planning.

COMPREHENSIVE MEDICAL EVALUATION

Recommendations

  • A complete medical evaluation should be performed at the initial visit to:

  • ○Confirm the diagnosis and classify diabetes. B

  • ○Evaluate for diabetes complications and potential comorbid conditions. E

  • ○Review previous treatment and risk factor control in patients with established diabetes. E

  • ○Begin patient engagement in the formulation of a care management plan. B

  • ○Develop a plan for continuing care. B

  • A follow-up visit should include most components of the initial comprehensive medical evaluation including: interval medical history; assessment of medication-taking behavior and intolerance/side effects; physical examination; laboratory evaluation as appropriate to assess attainment of A1C and metabolic targets; and assessment of risk for complications, diabetes self-management behaviors, nutrition, psychosocial health, and the need for referrals, immunizations, or other routine health maintenance screening. B

The comprehensive medical evaluation includes the initial and follow-up evaluations, assessment of complications, psychosocial assessment, management of comorbid conditions, and engagement of the patient throughout the process. While a comprehensive list is provided in Table 3.1 , in clinical practice, the provider may need to prioritize the components of the medical evaluation given the available resources and time. The goal is to provide the health care team information to optimally support a patient. In addition to the medical history, physical examination, and laboratory tests, providers should assess diabetes self-management behaviors, nutrition, and psychosocial health (see Section 4 “Lifestyle Management”) and give guidance on routine immunizations. The assessment of sleep pattern and duration should be considered; a recent meta-analysis found that poor sleep quality, short sleep, and long sleep were associated with higher A1C in people with type 2 diabetes (14). Interval follow-up visits should occur at least every 3–6 months, individualized to the patient, and then annually.

What are the nursing assessment findings that could indicate a patient has type 1 diabetes?

What are the nursing assessment findings that could indicate a patient has type 1 diabetes?

Continued on p. S31

Lifestyle management and psychosocial care are the cornerstones of diabetes management. Patients should be referred for diabetes self-management education and support (DSMES), medical nutrition therapy (MNT), and psychosocial/emotional health concerns if indicated. Patients should receive recommended preventive care services (e.g., immunizations, cancer screening, etc.); smoking cessation counseling; and ophthalmological, dental, and podiatric referrals. Additional referrals should be arranged as necessary (Table 3.2). Clinicians should ensure that individuals with diabetes are appropriately screened for complications and comorbidities. Discussing and implementing an approach to glycemic control with the patient is a part, not the sole goal, of care.

Table 3.2

Referrals for initial care management

• Eye care professional for annual dilated eye exam 
• Family planning for women of reproductive age 
• Registered dietitian for MNT 
• DSMES 
• Dentist for comprehensive dental and periodontal examination 
• Mental health professional, if indicated 

• Eye care professional for annual dilated eye exam 
• Family planning for women of reproductive age 
• Registered dietitian for MNT 
• DSMES 
• Dentist for comprehensive dental and periodontal examination 
• Mental health professional, if indicated 

Immunization

Recommendations

  • Provide routinely recommended vaccinations for children and adults with diabetes by age. C

  • Annual vaccination against influenza is recommended for all people ≥6 months of age, including those with diabetes. C

  • Vaccination against pneumococcal disease, including pneumococcal pneumonia, with 13-valent pneumococcal conjugate vaccine (PCV13) is recommended for children before age 2 years. People with diabetes ages 2 through 64 years should also receive 23-valent pneumococcal polysaccharide vaccine (PPSV23). At age ≥65 years, regardless of vaccination history, additional PPSV23 vaccination is necessary. C

  • Administer 3-dose series of hepatitis B vaccine to unvaccinated adults with diabetes ages 19 through 59 years. C

  • Consider administering 3-dose series of hepatitis B vaccine to unvaccinated adults with diabetes ages ≥60 years. C

Children and adults with diabetes should receive vaccinations according to age-specific recommendations (15,16). The child and adolescent vaccination schedule is available at www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html, and the adult vaccination schedule is available at www.cdc.gov/vaccines/schedules/hcp/imz/adult.html. These immunization schedules include vaccination schedules specifically for children, adolescents, and adults with diabetes.

People with diabetes are at higher risk for hepatitis B infection and are more likely to develop complications from influenza and pneumococcal disease. The Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices (ACIP) recommends influenza, pneumococcal, and hepatitis B vaccinations specifically for people with diabetes. Vaccination against tetanus-diphtheria-pertussis, measles-mumps-rubella, human papillomavirus, and shingles are also important for adults with diabetes, as they are for the general population.

Influenza

Influenza is a common, preventable infectious disease associated with high mortality and morbidity in vulnerable populations including the young and the elderly and people with chronic diseases. Influenza vaccination in people with diabetes has been found to significantly reduce influenza and diabetes-related hospital admissions (17).

Pneumococcal Pneumonia

Like influenza, pneumococcal pneumonia is a common, preventable disease. People with diabetes may be at increased risk for the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, with a mortality rate as high as 50% (18). The American Diabetes Association (ADA) endorses recommendations from the CDC ACIP that adults age ≥65 years, who are at higher risk for pneumococcal disease, receive an additional 23-valent pneumococcal polysaccharide vaccine (PPSV23), regardless of prior pneumococcal vaccination history. See detailed recommendations at www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/pneumo.html.

Hepatitis B

Compared with the general population, people with type 1 or type 2 diabetes have higher rates of hepatitis B. This may be due to contact with infected blood or through improper equipment use (glucose monitoring devices or infected needles). Because of the higher likelihood of transmission, hepatitis B vaccine is recommended for adults with diabetes age <60 years. For adults age ≥60 years, hepatitis B vaccine may be administered at the discretion of the treating clinician based on the patient’s likelihood of acquiring hepatitis B infection.

ASSESSMENT OF COMORBIDITIES

Besides assessing diabetes-related complications, clinicians and their patients need to be aware of common comorbidities that affect people with diabetes and may complicate management (19–23). Diabetes comorbidities are conditions that affect people with diabetes more often than age-matched people without diabetes. The list below includes many of the common comorbidities observed in patients with diabetes but is not necessarily inclusive of all the conditions that have been reported.

Autoimmune Diseases

Recommendation

  • Consider screening patients with type 1 diabetes for autoimmune thyroid disease and celiac disease soon after diagnosis. B

People with type 1 diabetes are at increased risk for other autoimmune diseases including thyroid disease, primary adrenal insufficiency, celiac disease, autoimmune gastritis, autoimmune hepatitis, dermatomyositis, and myasthenia gravis (24–26). Type 1 diabetes may also occur with other autoimmune diseases in the context of specific genetic disorders or polyglandular autoimmune syndromes (27). In autoimmune diseases, the immune system fails to maintain self-tolerance to specific peptides within target organs. It is likely that many factors trigger autoimmune disease; however, common triggering factors are known for only some autoimmune conditions (i.e., gliadin peptides in celiac disease) (see Section 12 “Children and Adolescents”).

Cancer

Diabetes is associated with increased risk of cancers of the liver, pancreas, endometrium, colon/rectum, breast, and bladder (28). The association may result from shared risk factors between type 2 diabetes and cancer (older age, obesity, and physical inactivity) but may also be due to diabetes-related factors (29), such as underlying disease physiology or diabetes treatments, although evidence for these links is scarce. Patients with diabetes should be encouraged to undergo recommended age- and sex-appropriate cancer screenings and to reduce their modifiable cancer risk factors (obesity, physical inactivity, and smoking).

Cognitive Impairment/Dementia

Recommendation

  • In people with a history of cognitive impairment/dementia, intensive glucose control cannot be expected to remediate deficits. Treatment should be tailored to avoid significant hypoglycemia. B

Diabetes is associated with a significantly increased risk and rate of cognitive decline and an increased risk of dementia (30,31). A recent meta-analysis of prospective observational studies in people with diabetes showed 73% increased risk of all types of dementia, 56% increased risk of Alzheimer dementia, and 127% increased risk of vascular dementia compared with individuals without diabetes (32). The reverse is also true: people with Alzheimer dementia are more likely to develop diabetes than people without Alzheimer dementia. In a 15-year prospective study of community-dwelling people >60 years of age, the presence of diabetes at baseline significantly increased the age- and sex-adjusted incidence of all-cause dementia, Alzheimer disease, and vascular dementia compared with rates in those with normal glucose tolerance (33).

Hyperglycemia

In those with type 2 diabetes, the degree and duration of hyperglycemia are related to dementia. More rapid cognitive decline is associated with both increased A1C and longer duration of diabetes (34). The Action to Control Cardiovascular Risk in Diabetes (ACCORD) study found that each 1% higher A1C level was associated with lower cognitive function in individuals with type 2 diabetes (35). However, the ACCORD study found no difference in cognitive outcomes in participants randomly assigned to intensive and standard glycemic control, supporting the recommendation that intensive glucose control should not be advised for the improvement of cognitive function in individuals with type 2 diabetes (36).

Hypoglycemia

In type 2 diabetes, severe hypoglycemia is associated with reduced cognitive function, and those with poor cognitive function have more severe hypoglycemia. In a long-term study of older patients with type 2 diabetes, individuals with one or more recorded episode of severe hypoglycemia had a stepwise increase in risk of dementia (37). Likewise, the ACCORD trial found that as cognitive function decreased, the risk of severe hypoglycemia increased (38). Tailoring glycemic therapy may help to prevent hypoglycemia in individuals with cognitive dysfunction.

Nutrition

In one study, adherence to the Mediterranean diet correlated with improved cognitive function (39). However, a recent Cochrane review found insufficient evidence to recommend any dietary change for the prevention or treatment of cognitive dysfunction (40).

Statins

A systematic review has reported that data do not support an adverse effect of statins on cognition (41). The U.S. Food and Drug Administration (FDA) postmarketing surveillance databases have also revealed a low reporting rate for cognitive-related adverse events, including cognitive dysfunction or dementia, with statin therapy, similar to rates seen with other commonly prescribed cardiovascular medications (41). Therefore, fear of cognitive decline should not be a barrier to statin use in individuals with diabetes and a high risk for cardiovascular disease.

Fatty Liver Disease

Diabetes is associated with the development of nonalcoholic chronic liver disease and with hepatocellular carcinoma (42). Elevations of hepatic transaminase concentrations are associated with higher BMI, waist circumference, and triglyceride levels and lower HDL cholesterol levels. Interventions that improve metabolic abnormalities in patients with diabetes (weight loss, glycemic control, and treatment with specific drugs for hyperglycemia or dyslipidemia) are also beneficial for fatty liver disease (43,44).

Pancreatitis

Recommendation

  • Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. C

Diabetes is linked to diseases of the exocrine pancreas such as pancreatitis, which may disrupt the global architecture or physiology of the pancreas, often resulting in both exocrine and endocrine dysfunction. Up to half of patients with diabetes may have impaired exocrine pancreas function (45). People with diabetes are at an approximately twofold higher risk of developing acute pancreatitis (46). Conversely, prediabetes and/or diabetes has been found to develop in approximately one-third of patients after an episode of acute pancreatitis (47), thus the relationship is likely bidirectional. Postpancreatitis diabetes may include either new-onset disease or previously unrecognized diabetes (48). Studies of patients treated with incretin-based therapies for diabetes have also reported that pancreatitis may occur more frequently with these medications, but results have been mixed (49,50).

Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. Approximately one-third of patients undergoing total pancreatectomy with islet autotransplantation are insulin free one year postoperatively, and observational studies from different centers have demonstrated islet graft function up to a decade after the surgery in some patients (51–55). Both patient and disease factors should be carefully considered when deciding the indications and timing of this surgery. Surgeries should be performed in skilled facilities that have demonstrated expertise in islet autotransplantation.

Fractures

Age-specific hip fracture risk is significantly increased in people with both type 1 (relative risk 6.3) and type 2 (relative risk 1.7) diabetes in both sexes (56). Type 1 diabetes is associated with osteoporosis, but in type 2 diabetes, an increased risk of hip fracture is seen despite higher bone mineral density (BMD) (57). In three large observational studies of older adults, femoral neck BMD T score and the World Health Organization Fracture Risk Assessment Tool (FRAX) score were associated with hip and nonspine fractures. Fracture risk was higher in participants with diabetes compared with those without diabetes for a given T score and age or for a given FRAX score (58). Providers should assess fracture history and risk factors in older patients with diabetes and recommend measurement of BMD if appropriate for the patient’s age and sex. Fracture prevention strategies for people with diabetes are the same as for the general population and include vitamin D supplementation. For patients with type 2 diabetes with fracture risk factors, thiazolidinediones (59) and sodium–glucose cotransporter 2 inhibitors (60) should be used with caution.

Hearing Impairment

Hearing impairment, both in high-frequency and low/mid-frequency ranges, is more common in people with diabetes than in those without, perhaps due to neuropathy and/or vascular disease. In a National Health and Nutrition Examination Survey (NHANES) analysis, hearing impairment was about twice as prevalent in people with diabetes compared with those without, after adjusting for age and other risk factors for hearing impairment (61).

HIV

Recommendation

  • Patients with HIV should be screened for diabetes and prediabetes with a fasting glucose level every 6–12 months before starting antiretroviral therapy and 3 months after starting or changing antiretroviral therapy. If initial screening results are normal, checking fasting glucose every year is advised. E

Diabetes risk is increased with certain protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs). New-onset diabetes is estimated to occur in more than 5% of patients infected with HIV on PIs, whereas more than 15% may have prediabetes (62). PIs are associated with insulin resistance and may also lead to apoptosis of pancreatic β-cells. NRTIs also affect fat distribution (both lipohypertrophy and lipoatrophy), which is associated with insulin resistance.

Individuals with HIV are at higher risk for developing prediabetes and diabetes on antiretroviral (ARV) therapies, so a screening protocol is recommended (63). The A1C test underestimates glycemia in people with HIV and is not recommended for diagnosis and may present challenges for monitoring (64). In those with prediabetes, weight loss through healthy nutrition and physical activity may reduce the progression toward diabetes. Among patients with HIV and diabetes, preventive health care using an approach similar to that used in patients without HIV is critical to reduce the risks of microvascular and macrovascular complications.

For patients with HIV and ARV-associated hyperglycemia, it may be appropriate to consider discontinuing the problematic ARV agents if safe and effective alternatives are available (65). Before making ARV substitutions, carefully consider the possible effect on HIV virological control and the potential adverse effects of new ARV agents. In some cases, antihyperglycemic agents may still be necessary.

Low Testosterone in Men

Recommendation

  • In men with diabetes who have symptoms or signs of hypogonadism such as decreased sexual desire (libido) or activity, or erectile dysfunction, consider screening with a morning serum testosterone level. B

Mean levels of testosterone are lower in men with diabetes compared with age-matched men without diabetes, but obesity is a major confounder (66,67). Treatment in asymptomatic men is controversial. Testosterone replacement in men with symptomatic hypogonadism may have benefits including improved sexual function, well being, muscle mass and strength, and bone density. (68). In men with diabetes who have symptoms or signs of low testosterone (hypogonadism), a morning total testosterone should be measured using an accurate and reliable assay. Free or bioavailable testosterone levels should also be measured in men with diabetes who have total testosterone levels close to the lower limit, given expected decreases in sex hormone–binding globulin with diabetes. Further testing (such as luteinizing hormone and follicle-stimulating hormone levels) may be needed to distinguish between primary and secondary hypogonadism.

Obstructive Sleep Apnea

Age-adjusted rates of obstructive sleep apnea, a risk factor for cardiovascular disease, are significantly higher (4- to 10-fold) with obesity, especially with central obesity (69). The prevalence of obstructive sleep apnea in the population with type 2 diabetes may be as high as 23%, and the prevalence of any sleep disordered breathing may be as high as 58% (70,71). In obese participants enrolled in the Action for Health in Diabetes (Look AHEAD) trial, it exceeded 80% (72). Sleep apnea treatment (lifestyle modification, continuous positive airway pressure, oral appliances, and surgery) significantly improves quality of life and blood pressure control. The evidence for a treatment effect on glycemic control is mixed (73).

Periodontal Disease

Periodontal disease is more severe, and may be more prevalent, in patients with diabetes than in those without (74,75). Current evidence suggests that periodontal disease adversely affects diabetes outcomes, although evidence for treatment benefits remains controversial (23).

Psychosocial/Emotional Disorders

Prevalence of clinically significant psychopathology diagnoses are considerably more common in people with diabetes than in those without the disease (76). Symptoms, both clinical and subclinical, that interfere with the person’s ability to carry out daily diabetes self-management tasks must be addressed. Providers should consider an assessment of symptoms of depression, anxiety, and disordered eating, and of cognitive capacities using patient-appropriate standardized/validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended. Diabetes distress is addressed in Section 4 “Lifestyle Management,” as this state is very common and distinct from the psychological disorders discussed below (77).

Anxiety Disorders

Recommendations

  • Consider screening for anxiety in people exhibiting anxiety or worries regarding diabetes complications, insulin injections or infusion, taking medications, and/or hypoglycemia that interfere with self-management behaviors and those who express fear, dread, or irrational thoughts and/or show anxiety symptoms such as avoidance behaviors, excessive repetitive behaviors, or social withdrawal. Refer for treatment if anxiety is present. B

  • People with hypoglycemia unawareness, which can co-occur with fear of hypoglycemia, should be treated using blood glucose awareness training (or other evidence-based intervention) to help reestablish awareness of hypoglycemia and reduce fear of hypoglycemia. A

Anxiety symptoms and diagnosable disorders (e.g., generalized anxiety disorder, body dysmorphic disorder, obsessive-compulsive disorder, specific phobias, and posttraumatic stress disorder) are common in people with diabetes (78). The Behavioral Risk Factor Surveillance System (BRFSS) estimated the lifetime prevalence of generalized anxiety disorder to be 19.5% in people with either type 1 or type 2 diabetes (79). Common diabetes-specific concerns include fears related to hypoglycemia (80,81), not meeting blood glucose targets (78), and insulin injections or infusion (82). Onset of complications presents another critical point when anxiety can occur (83). People with diabetes who exhibit excessive diabetes self-management behaviors well beyond what is prescribed or needed to achieve glycemic targets may be experiencing symptoms of obsessive-compulsive disorder (84).

General anxiety is a predictor of injection-related anxiety and associated with fear of hypoglycemia (81,85). Fear of hypoglycemia and hypoglycemia unawareness often co-occur, and interventions aimed at treating one often benefit both (86). Fear of hypoglycemia may explain avoidance of behaviors associated with lowering glucose such as increasing insulin doses or frequency of monitoring. If fear of hypoglycemia is identified and a person does not have symptoms of hypoglycemia, a structured program, blood glucose awareness training, delivered in routine clinical practice, can improve A1C, reduce the rate of severe hypoglycemia, and restore hypoglycemia awareness (87,88).

Depression

Recommendations

  • Providers should consider annual screening of all patients with diabetes, especially those with a self-reported history of depression, for depressive symptoms with age-appropriate depression screening measures, recognizing that further evaluation will be necessary for individuals who have a positive screen. B

  • Beginning at diagnosis of complications or when there are significant changes in medical status, consider assessment for depression. B

  • Referrals for treatment of depression should be made to mental health providers with experience using cognitive behavioral therapy, interpersonal therapy, or other evidence-based treatment approaches in conjunction with collaborative care with the patient's diabetes treatment team. A

History of depression, current depression, and antidepressant medication use are risk factors for the development of type 2 diabetes, especially if the individual has other risk factors such as obesity and family history of type 2 diabetes (89–91). Elevated depressive symptoms and depressive disorders affect one in four patients with type 1 or type 2 diabetes (92). Thus, routine screening for depressive symptoms is indicated in this high-risk population including people with type 1 or type 2 diabetes, gestational diabetes mellitus, and postpartum diabetes. Regardless of diabetes type, women have significantly higher rates of depression than men (93).

Routine monitoring with patient-appropriate validated measures can help to identify if referral is warranted. Adult patients with a history of depressive symptoms or disorder need ongoing monitoring of depression recurrence within the context of routine care (88). Integrating mental and physical health care can improve outcomes. When a patient is in psychological therapy (talk therapy), the mental health provider should be incorporated into the diabetes treatment team (94).

Disordered Eating Behavior

Recommendations

  • Providers should consider reevaluating the treatment regimen of people with diabetes who present with symptoms of disordered eating behavior, an eating disorder, or disrupted patterns of eating. B

  • Consider screening for disordered or disrupted eating using validated screening measures when hyperglycemia and weight loss are unexplained based on self-reported behaviors related to medication dosing, meal plan, and physical activity. In addition, a review of the medical regimen is recommended to identify potential treatment-related effects on hunger/caloric intake. B

Estimated prevalence of disordered eating behaviors and diagnosable eating disorders in people with diabetes varies (95–97). For people with type 1 diabetes, insulin omission causing glycosuria in order to lose weight is the most commonly reported disordered eating behavior (98,99); in people with type 2 diabetes, bingeing (excessive food intake with an accompanying sense of loss of control) is most commonly reported. For people with type 2 diabetes treated with insulin, intentional omission is also frequently reported (100). People with diabetes and diagnosable eating disorders have high rates of comorbid psychiatric disorders (101). People with type 1 diabetes and eating disorders have high rates of diabetes distress and fear of hypoglycemia (102).

When evaluating symptoms of disordered or disrupted eating in people with diabetes, etiology and motivation for the behavior should be considered (97,103). Adjunctive medication such as glucagon-like peptide 1 receptor agonists (104) may help individuals not only to meet glycemic targets but also to regulate hunger and food intake, thus having the potential to reduce uncontrollable hunger and bulimic symptoms.

Serious Mental Illness

Recommendations

  • Annually screen people who are prescribed atypical antipsychotic medications for prediabetes or diabetes. B

  • If a second-generation antipsychotic medication is prescribed for adolescents or adults with diabetes, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed. C

  • Incorporate monitoring of diabetes self-care activities into treatment goals in people with diabetes and serious mental illness. B

Studies of individuals with serious mental illness, particularly schizophrenia and other thought disorders, show significantly increased rates of type 2 diabetes (105). People with schizophrenia should be monitored for type 2 diabetes because of the known comorbidity. Disordered thinking and judgment can be expected to make it difficult to engage in behaviors that reduce risk factors for type 2 diabetes, such as restrained eating for weight management. Coordinated management of diabetes or prediabetes and serious mental illness is recommended to achieve diabetes treatment targets. In addition, those taking second-generation (atypical) antipsychotics such as olanzapine require greater monitoring because of an increase in risk of type 2 diabetes associated with this medication (106).

Suggested citation: American Diabetes Association. 3. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018;41(Suppl. 1):S28–S37

References

1.

Stellefson

M

,

Dipnarine

K

,

Stopka

C

.

The Chronic Care Model and diabetes management in US primary care settings: a systematic review

.

Prev Chronic Dis

2013

;

10

:

E26

2.

Coleman

K

,

Austin

BT

,

Brach

C

,

Wagner

EH

.

Evidence on the Chronic Care Model in the new millennium

.

Health Aff (Millwood)

2009

;

28

:

75

85

3.

Gabbay

RA

,

Bailit

MH

,

Mauger

DT

,

Wagner

EH

,

Siminerio

L

.

Multipayer patient-centered medical home implementation guided by the Chronic Care Model

.

Jt Comm J Qual Patient Saf

2011

;

37

:

265

273

4.

UK Prospective Diabetes Study (UKPDS) Group

.

Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)

.

Lancet

1998

;

352

:

837

853

5.

The Diabetes Control and Complications Trial Research Group

.

The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus

.

N Engl J Med

1993

;

329

:

977

986

6.

Lachin

JM

,

Genuth

S

,

Nathan

DM

,

Zinman

B

,

Rutledge

BN

;

DCCT/EDIC Research Group

.

Effect of glycemic exposure on the risk of microvascular complications in the Diabetes Control and Complications Trial—revisited

.

Diabetes

2008

;

57

:

995

1001

7.

White

NH

,

Cleary

PA

,

Dahms

W

,

Goldstein

D

,

Malone

J

,

Tamborlane

WV

;

Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group

.

Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT)

.

J Pediatr

2001

;

139

:

804

812

8.

Anderson

RM

,

Funnell

MM

.

Compliance and adherence are dysfunctional concepts in diabetes care

.

Diabetes Educ

2000

;

26

:

597

604

9.

Sarkar

U

,

Fisher

L

,

Schillinger

D

.

Is self-efficacy associated with diabetes self-management across race/ethnicity and health literacy?

Diabetes Care

2006

;

29

:

823

829

10.

King

DK

,

Glasgow

RE

,

Toobert

DJ

, et al.

Self-efficacy, problem solving, and social-environmental support are associated with diabetes self-management behaviors

.

Diabetes Care

2010

;

33

:

751

753

11.

Nouwen

A

,

Urquhart Law

G

,

Hussain

S

,

McGovern

S

,

Napier

H

.

Comparison of the role of self-efficacy and illness representations in relation to dietary self-care and diabetes distress in adolescents with type 1 diabetes

.

Psychol Health

2009

;

24

:

1071

1084

12.

Beckerle

CM

,

Lavin

MA

.

Association of self-efficacy and self-care with glycemic control in diabetes

.

Diabetes Spectr

2013

;

26

:

172

178

13.

Iannotti

RJ

,

Schneider

S

,

Nansel

TR

, et al.

Self-efficacy, outcome expectations, and diabetes self-management in adolescents with type 1 diabetes

.

J Dev Behav Pediatr

2006

;

27

:

98

105

14.

Lee

SWH

,

Ng

KY

,

Chin

WK

.

The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: a systematic review and meta-analysis

.

Sleep Med Rev

2017

;

31

:

91

101

15.

Robinson

CL

,

Romero

JR

,

Kempe

A

,

Pellegrini

C

;

Advisory Committee on Immunization Practices (ACIP) Child/Adolescent Immunization Work Group

.

Advisory Committee on Immunization Practices recommended immunization schedule for children and adolescents aged 18 years or younger—United States, 2017

.

MMWR Morb Mortal Wkly Rep

2017

;

66

:

134

135

16.

Kim

DK

,

Riley

LE

,

Harriman

KH

,

Hunter

P

,

Bridges

CB

.

Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older—United States, 2017

.

MMWR Morb Mortal Wkly Rep

2017

;

66

:

136

138

17.

Goeijenbier

M

,

van Sloten

TT

,

Slobbe

L

, et al.

Benefits of flu vaccination for persons with diabetes mellitus: a review

.

Vaccine

2017

;

35

:

5095

5101

18.

Smith

SA

,

Poland

GA

.

Use of influenza and pneumococcal vaccines in people with diabetes

.

Diabetes Care

2000

;

23

:

95

108

19.

Selvin

E

,

Coresh

J

,

Brancati

FL

.

The burden and treatment of diabetes in elderly individuals in the U.S

.

Diabetes Care

2006

;

29

:

2415

2419

20.

Grant

RW

,

Ashburner

JM

,

Hong

CS

,

Chang

Y

,

Barry

MJ

,

Atlas

SJ

.

Defining patient complexity from the primary care physician’s perspective: a cohort study

.

Ann Intern Med

2011

;

155

:

797

804

21.

Tinetti

ME

,

Fried

TR

,

Boyd

CM

.

Designing health care for the most common chronic condition—multimorbidity

.

JAMA

2012

;

307

:

2493

2494

22.

Sudore

RL

,

Karter

AJ

,

Huang

ES

, et al.

Symptom burden of adults with type 2 diabetes across the disease course: Diabetes & Aging Study

.

J Gen Intern Med

2012

;

27

:

1674

1681

23.

Borgnakke

WS

,

Ylöstalo

PV

,

Taylor

GW

,

Genco

RJ

.

Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence

.

J Periodontol

2013

;

84

(

Suppl.

):

S135

S152

24.

Triolo

TM

,

Armstrong

TK

,

McFann

K

, et al.

Additional autoimmune disease found in 33% of patients at type 1 diabetes onset

.

Diabetes Care

2011

;

34

:

1211

1213

25.

Hughes

JW

,

Riddlesworth

TD

,

DiMeglio

LA

,

Miller

KM

,

Rickels

MR

,

McGill

JB

;

T1D Exchange Clinic Network

.

Autoimmune diseases in children and adults with type 1 diabetes from the T1D Exchange Clinic Registry

.

J Clin Endocrinol Metab

2016

;

101

:

4931

4937

26.

Kahaly

GJ

,

Hansen

MP

.

Type 1 diabetes associated autoimmunity

.

Autoimmun Rev

2016

;

15

:

644

648

27.

Eisenbarth

GS

,

Gottlieb

PA

.

Autoimmune polyendocrine syndromes

.

N Engl J Med

2004

;

350

:

2068

2079

28.

Suh

S

,

Kim

K-W

.

Diabetes and cancer: is diabetes causally related to cancer?

Diabetes Metab J

2011

;

35

:

193

198

29.

Giovannucci

E

,

Harlan

DM

,

Archer

MC

, et al.

Diabetes and cancer: a consensus report

.

Diabetes Care

2010

;

33

:

1674

1685

30.

Cukierman

T

,

Gerstein

HC

,

Williamson

JD

.

Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies

.

Diabetologia

2005

;

48

:

2460

2469

31.

Biessels

GJ

,

Staekenborg

S

,

Brunner

E

,

Brayne

C

,

Scheltens

P

.

Risk of dementia in diabetes mellitus: a systematic review

.

Lancet Neurol

2006

;

5

:

64

74

32.

Gudala

K

,

Bansal

D

,

Schifano

F

,

Bhansali

A

.

Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies

.

J Diabetes Investig

2013

;

4

:

640

650

33.

Ohara

T

,

Doi

Y

,

Ninomiya

T

, et al.

Glucose tolerance status and risk of dementia in the community: the Hisayama study

.

Neurology

2011

;

77

:

1126

1134

34.

Rawlings

AM

,

Sharrett

AR

,

Schneider

ALC

, et al.

Diabetes in midlife and cognitive change over 20 years: a cohort study

.

Ann Intern Med

2014

;

161

:

785

793

35.

Cukierman-Yaffe

T

,

Gerstein

HC

,

Williamson

JD

, et al.;

Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) Investigators

.

Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) trial

.

Diabetes Care

2009

;

32

:

221

226

36.

Launer

LJ

,

Miller

ME

,

Williamson

JD

, et al.;

ACCORD MIND Investigators

.

Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy

.

Lancet Neurol

2011

;

10

:

969

977

37.

Whitmer

RA

,

Karter

AJ

,

Yaffe

K

,

Quesenberry

CP

Jr
,

Selby

JV

.

Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus

.

JAMA

2009

;

301

:

1565

1572

38.

Punthakee

Z

,

Miller

ME

,

Launer

LJ

, et al.;

ACCORD Group of Investigators

;

ACCORD-MIND Investigators

.

Poor cognitive function and risk of severe hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial

.

Diabetes Care

2012

;

35

:

787

793

39.

Scarmeas

N

,

Stern

Y

,

Mayeux

R

,

Manly

JJ

,

Schupf

N

,

Luchsinger

JA

.

Mediterranean diet and mild cognitive impairment

.

Arch Neurol

2009

;

66

:

216

225

40.

Ooi

CP

,

Loke

SC

,

Yassin

Z

,

Hamid

T-A

.

Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment

.

Cochrane Database Syst Rev

2011

;

4

:

CD007220

41.

Richardson

K

,

Schoen

M

,

French

B

, et al.

Statins and cognitive function: a systematic review

.

Ann Intern Med

2013

;

159

:

688

697

42.

El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004;126:460–468

43.

American Gastroenterological Association

.

American Gastroenterological Association medical position statement: nonalcoholic fatty liver disease

.

Gastroenterology

2002

;

123

:

1702

1704

44.

Cusi

K

,

Orsak

B

,

Bril

F

, et al.

Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial

.

Ann Intern Med

2016

;

165

:

305

315

45.

Hardt

PD

,

Brendel

MD

,

Kloer

HU

,

Bretzel

RG

.

Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed?

Diabetes Care

2008

;

31

(

Suppl. 2

):

S165

S169

46.

Lee

Y-K

,

Huang

M-Y

,

Hsu

C-Y

,

Su

Y-C

.

Bidirectional relationship between diabetes and acute pancreatitis: a population-based cohort study in Taiwan

.

Medicine (Baltimore)

2016

;

95

:

e2448

47.

Das

SLM

,

Singh

PP

,

Phillips

ARJ

,

Murphy

R

,

Windsor

JA

,

Petrov

MS

.

Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis

.

Gut

2014

;

63

:

818

831

48.

Petrov

MS

.

Diabetes of the exocrine pancreas: American Diabetes Association-compliant lexicon

.

Pancreatology

2017

;

17

:

523

526

49.

Thomsen

RW

,

Pedersen

L

,

Møller

N

,

Kahlert

J

,

Beck-Nielsen

H

,

Sørensen

HT

.

Incretin-based therapy and risk of acute pancreatitis: a nationwide population-based case-control study

.

Diabetes Care

2015

;

38

:

1089

1098

50.

Tkáč

I

,

Raz

I

.

Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes

.

Diabetes Care

2017

;

40

:

284

286

51.

Bellin

MD

,

Gelrud

A

,

Arreaza-Rubin

G

, et al.

Total pancreatectomy with islet autotransplantation: summary of an NIDDK workshop

.

Ann Surg

2015

;

261

:

21

29

52.

Sutherland

DER

,

Radosevich

DM

,

Bellin

MD

, et al.

Total pancreatectomy and islet autotransplantation for chronic pancreatitis

.

J Am Coll Surg

2012

;

214

:

409

424

53.

Quartuccio

M

,

Hall

E

,

Singh

V

, et al.

Glycemic predictors of insulin independence after total pancreatectomy with islet autotransplantation

.

J Clin Endocrinol Metab

2017

;

102

:

801

809

54.

Webb

MA

,

Illouz

SC

,

Pollard

CA

, et al.

Islet auto transplantation following total pancreatectomy: a long-term assessment of graft function

.

Pancreas

2008

;

37

:

282

287

55.

Wu

Q

,

Zhang

M

,

Qin

Y

, et al.

Systematic review and meta-analysis of islet autotransplantation after total pancreatectomy in chronic pancreatitis patients

.

Endocr J

2015

;

62

:

227

234

56.

Janghorbani

M

,

Van Dam

RM

,

Willett

WC

,

Hu

FB

.

Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture

.

Am J Epidemiol

2007

;

166

:

495

505

57.

Vestergaard

P

.

Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis

.

Osteoporos Int

2007

;

18

:

427

444

58.

Schwartz

AV

,

Vittinghoff

E

,

Bauer

DC

, et al.;

Study of Osteoporotic Fractures (SOF) Research Group

;

Osteoporotic Fractures in Men (MrOS) Research Group

;

Health, Aging, and Body Composition (Health ABC) Research Group

.

Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes

.

JAMA

2011

;

305

:

2184

2192

59.

Kahn

SE

,

Zinman

B

,

Lachin

JM

, et al.;

Diabetes Outcome Progression Trial (ADOPT) Study Group

.

Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT)

.

Diabetes Care

2008

;

31

:

845

851

60.

Taylor

SI

,

Blau

JE

,

Rother

KI

.

Possible adverse effects of SGLT2 inhibitors on bone

.

Lancet Diabetes Endocrinol

2015

;

3

:

8

10

61.

Bainbridge

KE

,

Hoffman

HJ

,

Cowie

CC

.

Diabetes and hearing impairment in the United States: audiometric evidence from the National Health and Nutrition Examination Survey, 1999 to 2004

.

Ann Intern Med

2008

;

149

:

1

10

62.

Monroe

AK

,

Glesby

MJ

,

Brown

TT

.

Diagnosing and managing diabetes in HIV-infected patients: current concepts

.

Clin Infect Dis

2015

;

60

:

453

462

63.

Schambelan

M

,

Benson

CA

,

Carr

A

, et al.;

International AIDS Society-USA

.

Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel

.

J Acquir Immune Defic Syndr

2002

;

31

:

257

275

.

64.

Kim

PS

,

Woods

C

,

Georgoff

P

, et al.

A1C underestimates glycemia in HIV infection

.

Diabetes Care

2009

;

32

:

1591

1593

65.

Wohl

DA

,

McComsey

G

,

Tebas

P

, et al.

Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy

.

Clin Infect Dis

2006

;

43

:

645

653

66.

Dhindsa

S

,

Miller

MG

,

McWhirter

CL

, et al.

Testosterone concentrations in diabetic and nondiabetic obese men

.

Diabetes Care

2010

;

33

:

1186

1192

67.

Grossmann

M

.

Low testosterone in men with type 2 diabetes: significance and treatment

.

J Clin Endocrinol Metab

2011

;

96

:

2341

2353

68.

Bhasin

S

,

Cunningham

GR

,

Hayes

FJ

, et al.;

Task Force, Endocrine Society

.

Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline

.

J Clin Endocrinol Metab

2010

;

95

:

2536

2559

69.

Li

C

,

Ford

ES

,

Zhao

G

,

Croft

JB

,

Balluz

LS

,

Mokdad

AH

.

Prevalence of self-reported clinically diagnosed sleep apnea according to obesity status in men and women: National Health and Nutrition Examination Survey, 2005–2006

.

Prev Med

2010

;

51

:

18

23

70.

West

SD

,

Nicoll

DJ

,

Stradling

JR

.

Prevalence of obstructive sleep apnoea in men with type 2 diabetes

.

Thorax

2006

;

61

:

945

950

71.

Resnick

HE

,

Redline

S

,

Shahar

E

, et al.;

Sleep Heart Health Study

.

Diabetes and sleep disturbances: findings from the Sleep Heart Health Study

.

Diabetes Care

2003

;

26

:

702

709

72.

Foster

GD

,

Sanders

MH

,

Millman

R

, et al.;

Sleep AHEAD Research Group

.

Obstructive sleep apnea among obese patients with type 2 diabetes

.

Diabetes Care

2009

;

32

:

1017

1019

73.

Shaw

JE

,

Punjabi

NM

,

Wilding

JP

,

Alberti

KGMM

,

Zimmet

PZ

;

International Diabetes Federation Taskforce on Epidemiology and Prevention

.

Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention

.

Diabetes Res Clin Pract

2008

;

81

:

2

12

74.

Khader

YS

,

Dauod

AS

,

El-Qaderi

SS

,

Alkafajei

A

,

Batayha

WQ

.

Periodontal status of diabetics compared with nondiabetics: a meta-analysis

.

J Diabetes Complications

2006

;

20

:

59

68

75.

Casanova

L

,

Hughes

FJ

,

Preshaw

PM

.

Diabetes and periodontal disease: a two-way relationship

.

Br Dent J

2014

;

217

:

433

437

76.

de Groot

M

,

Golden

SH

,

Wagner

J

.

Psychological conditions in adults with diabetes

.

Am Psychol

2016

;

71

:

552

562

77.

Young-Hyman

D

,

de Groot

M

,

Hill-Briggs

F

,

Gonzalez

JS

,

Hood

K

,

Peyrot

M

.

Psychosocial care for people with diabetes: a position statement of the American Diabetes Association

.

Diabetes Care

2016

;

39

:

2126

2140

78.

Smith

KJ

,

Béland

M

,

Clyde

M

, et al.

Association of diabetes with anxiety: a systematic review and meta-analysis

.

J Psychosom Res

2013

;

74

:

89

99

79.

Li

C

,

Barker

L

,

Ford

ES

,

Zhang

X

,

Strine

TW

,

Mokdad

AH

.

Diabetes and anxiety in US adults: findings from the 2006 Behavioral Risk Factor Surveillance System

.

Diabet Med

2008

;

25

:

878

881

80.

Cox

DJ

,

Irvine

A

,

Gonder-Frederick

L

,

Nowacek

G

,

Butterfield

J

.

Fear of hypoglycemia: quantification, validation, and utilization

.

Diabetes Care

1987

;

10

:

617

621

81.

Wild

D

,

von Maltzahn

R

,

Brohan

E

,

Christensen

T

,

Clauson

P

,

Gonder-Frederick

L

.

A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education

.

Patient Educ Couns

2007

;

68

:

10

15

82.

Zambanini

A

,

Newson

RB

,

Maisey

M

,

Feher

MD

.

Injection related anxiety in insulin-treated diabetes

.

Diabetes Res Clin Pract

1999

;

46

:

239

246

83.

Young-Hyman

D

,

Peyrot

M

.

Psychosocial Care for People with Diabetes

.

Alexandria, VA

,

American Diabetes Association

,

2012

84.

American Psychiatric Association

.

Diagnostic and Statistical Manual of Mental Disorders [Internet]

,

2013

. 5th ed.

85.

Mitsonis

C

,

Dimopoulos

N

,

Psarra

V

.

P01-138 Clinical implications of anxiety in diabetes: a critical review of the evidence base

.

Eur Psychiatry

2009

;

24

(

Suppl. 1

):

S526

86.

Yeoh

E

,

Choudhary

P

,

Nwokolo

M

,

Ayis

S

,

Amiel

SA

.

Interventions that restore awareness of hypoglycemia in adults with type 1 diabetes: a systematic review and meta-analysis

.

Diabetes Care

2015

;

38

:

1592

1609

87.

Cox

DJ

,

Gonder-Frederick

L

,

Polonsky

W

,

Schlundt

D

,

Kovatchev

B

,

Clarke

W

.

Blood glucose awareness training (BGAT-2): long-term benefits

.

Diabetes Care

2001

;

24

:

637

642

88.

Gonder-Frederick

LA

,

Schmidt

KM

,

Vajda

KA

, et al.

Psychometric properties of the Hypoglycemia Fear Survey-II for adults with type 1 diabetes

.

Diabetes Care

2011

;

34

:

801

806

89.

Lustman

PJ

,

Griffith

LS

,

Clouse

RE

.

Depression in adults with diabetes. Results of 5-yr follow-up study

.

Diabetes Care

1988

;

11

:

605

612

90.

de Groot

M

,

Crick

KA

,

Long

M

,

Saha

C

,

Shubrook

JH

.

Lifetime duration of depressive disorders in patients with type 2 diabetes

.

Diabetes Care

2016

;

39

:

2174

2181

91.

Rubin

RR

,

Ma

Y

,

Marrero

DG

, et al.;

Diabetes Prevention Program Research Group

.

Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the Diabetes Prevention Program

.

Diabetes Care

2008

;

31

:

420

426

92.

Anderson

RJ

,

Freedland

KE

,

Clouse

RE

,

Lustman

PJ

.

The prevalence of comorbid depression in adults with diabetes: a meta-analysis

.

Diabetes Care

2001

;

24

:

1069

1078

93.

Clouse

RE

,

Lustman

PJ

,

Freedland

KE

,

Griffith

LS

,

McGill

JB

,

Carney

RM

.

Depression and coronary heart disease in women with diabetes

.

Psychosom Med

2003

;

65

:

376

383

94.

Katon

WJ

,

Lin

EHB

,

Von Korff

M

, et al.

Collaborative care for patients with depression and chronic illnesses

.

N Engl J Med

2010

;

363

:

2611

2620

95.

Pinhas-Hamiel

O

,

Hamiel

U

,

Levy-Shraga

Y

.

Eating disorders in adolescents with type 1 diabetes: challenges in diagnosis and treatment

.

World J Diabetes

2015

;

6

:

517

526

96.

Papelbaum

M

,

Appolinário

JC

,

Moreira

Rde O

,

Ellinger

VCM

,

Kupfer

R

,

Coutinho

WF

.

Prevalence of eating disorders and psychiatric comorbidity in a clinical sample of type 2 diabetes mellitus patients

.

Rev Bras Psiquiatr

2005

;

27

:

135

138

97.

Young-Hyman

DL

,

Davis

CL

.

Disordered eating behavior in individuals with diabetes: importance of context, evaluation, and classification

.

Diabetes Care

2010

;

33

:

683

689

98.

Pinhas-Hamiel

O

,

Hamiel

U

,

Greenfield

Y

, et al.

Detecting intentional insulin omission for weight loss in girls with type 1 diabetes mellitus

.

Int J Eat Disord

2013

;

46

:

819

825

99.

Goebel-Fabbri

AE

,

Fikkan

J

,

Franko

DL

,

Pearson

K

,

Anderson

BJ

,

Weinger

K

.

Insulin restriction and associated morbidity and mortality in women with type 1 diabetes

.

Diabetes Care

2008

;

31

:

415

419

100.

Weinger

K

,

Beverly

EA

.

Barriers to achieving glycemic targets: who omits insulin and why?

Diabetes Care

2010

;

33

:

450

452

101.

Hudson

JI

,

Hiripi

E

,

Pope

HG

Jr
,

Kessler

RC

.

The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication

.

Biol Psychiatry

2007

;

61

:

348

358

102.

Martyn-Nemeth

P

,

Quinn

L

,

Hacker

E

,

Park

H

,

Kujath

AS

.

Diabetes distress may adversely affect the eating styles of women with type 1 diabetes

.

Acta Diabetol

2014

;

51

:

683

686

103.

Peterson

CM

,

Fischer

S

,

Young-Hyman

D

.

Topical review: a comprehensive risk model for disordered eating in youth with type 1 diabetes

.

J Pediatr Psychol

2015

;

40

:

385

390

104.

Garber

AJ

.

Novel GLP-1 receptor agonists for diabetes

.

Expert Opin Investig Drugs

2012

;

21

:

45

57

105.

Suvisaari

J

,

Perälä

J

,

Saarni

SI

, et al.

Type 2 diabetes among persons with schizophrenia and other psychotic disorders in a general population survey

.

Eur Arch Psychiatry Clin Neurosci

2008

;

258

:

129

136

106.

Koro

CE

,

Fedder

DO

,

L’Italien

GJ

, et al.

Assessment of independent effect of olanzapine and risperidone on risk of diabetes among patients with schizophrenia: population based nested case-control study

.

BMJ

2002

;

325

:

243

© 2017 by the American Diabetes Association.

2017

13,400 Views

56 Citations

Email alerts

Which are clinical findings usually associated with type 1 diabetes?

The most common symptoms of type 1 diabetes mellitus (DM) are polyuria, polydipsia, and polyphagia, along with lassitude, nausea, and blurred vision, all of which result from the hyperglycemia itself. Polyuria is caused by osmotic diuresis secondary to hyperglycemia.

What are the nursing assessment for diabetes?

The nurse should assess the following for patients with Diabetes Mellitus:.
Assess the patient's history. ... .
Assess physical condition. ... .
Assess the body mass index and visual acuity of the patient..
Perform examination of foot, skin, nervous system and mouth..
Laboratory examinations..

What are some nursing diagnosis for type 1 diabetes?

Nursing Diagnoses Risk for impaired skin integrity related to slow healing process and decreased circulation. Risk for infection related to elevated glucose levels. Deficient knowledge related to complications of hypoglycemia and hyperglycemia. Deficient knowledge related to appropriate exercise and activity.

What is type 1 diabetes characterized?

Type 1 diabetes is a disorder characterized by abnormally high blood sugar levels. In this form of diabetes, specialized cells in the pancreas called beta cells stop producing insulin . Insulin controls how much glucose (a type of sugar) is passed from the blood into cells for conversion to energy.