Which of the following most effectively minimizes radiation exposure to the patient?

Which of the following most effectively minimizes radiation exposure to the patient?

  • PDFView PDF

Which of the following most effectively minimizes radiation exposure to the patient?

Which of the following most effectively minimizes radiation exposure to the patient?

Introduction

Concerns over radiation safety are valid. Understanding and maintaining safe administration helps patients understand the potential risks during endovascular procedures.

Methods

X-ray production, units of radiation exposure, and forms of direct and indirect exposures are discussed.

Results

Positioning of the image intensifier as close to the patient as practical, moving the x-ray tube as far from the patient as possible, and using pulse fluoroscopy are all ways to help decrease the radiation dose. Collimation, achievable without the use of fluoroscopy, improves image quality while decreasing the radiation dose. Time, distance, and shielding are the three most productive means of reducing radiation exposure.

Conclusion

The best defense against radiation injury to both patient and staff is to minimize the total fluoroscopy time, keep the image intensifier close to the patient, collimate to the region of interest, and use appropriate radiation shielding and monitoring.

Cited by (0)

Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

1. Thom T., et al. Heart disease and stroke statistics—2006 update—a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:E85–E151. [PubMed] [Google Scholar]

2. Togni M., Balmer F., Pfiffner D., Meier W., Zeiher A. M., Meier B. Percutaneous coronary interventions in Europe 1992–2001. Eur. Heart J. 2004;25:1208–1213. [PubMed] [Google Scholar]

3. Finkelstein M. M. Is brain cancer an occupational disease of cardiologists? Can. J. Cardiol. 1998;14:1385–1388. [PubMed] [Google Scholar]

4. Hardell L., Mild K. H., Pahlson A., Hallquist A. Ionizing radiation, cellular telephones and the risk for brain tumours. Eur. J. Cancer Prev. 2001;10:523–529. [PubMed] [Google Scholar]

5. Hirshfeld J. W., et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures—a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. J. Am. Coll. Cardiol. 2004;44:2259–2282. [PubMed] [Google Scholar]

6. Kim K. P., Miller D. L., Balter S., Kleinerman R. A., Linet M. S., Kwon D., Simon S. L. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008;94:211–227. [PubMed] [Google Scholar]

7. Chida K., Fuda K., Saito H., Takai Y., Takahashi S., Yamada S., Kohzuki M., Zuguchi M. Patient skin dose in cardiac interventional procedures: conventional fluoroscopy versus pulsed fluoroscopy. Catheter. Cardiovasc. Interv. 2007;69:115–121. [PubMed] [Google Scholar]

8. Mahesh M. The AAPM/RSNA physics tutorial for residents—fluoroscopy: patient radiation exposure issues. Radiographics. 2001;21:1033–1045. [PubMed] [Google Scholar]

9. Balter S., Bernardi G., Cotelo E., Faulkner K., Miller D. L., Nowotny R., Lopez P. O., Padovani R., Ramirez A., Vano E. Potential radiation guidance levels for invasive cardiology. Med. Phys. 2006;33:2212–2212. [Google Scholar]

10. Bernardi G., Padovani R., Morocutti G., Vano E., Malisan M. R., Rinuncini M., Spedicato L., Fioretti P. M. Clinical and technical determinants of the complexity of percutaneous transluminal coronary angioplasty procedures: analysis in relation to radiation exposure parameters. Catheter. Cardiovasc. Interv. 2000;51:1–9. [PubMed] [Google Scholar]

11. Nikolsky M., et al. An evaluation of fluoroscopy time and correlation with outcomes after percutaneous coronary intervention. J. Invasive Cardiol. 2007;19:208–213. [PubMed] [Google Scholar]

12. Padovani R., Bernardi G., Malisan M. R., Vano E., Morocutti G., Fioretti P. M. Patient dose related to the complexity of interventional cardiology procedures. Radiat. Prot. Dosim. 2001;94:189–192. [PubMed] [Google Scholar]

13. Peterzol A., Quai E., Padovani R., Bernardi G., Kotre C. J., Dowling A. Reference levels in PTCA as a function of procedure complexity. Radiat. Prot. Dosim. 2006;117:54–58. [PubMed] [Google Scholar]

14. Tsapaki V., Magginas A., Vano E. S. K., Papadakis E., Dafnomili P., Kyrozi E., Kollaros N. V. N., Cokkinos D. Factors that influence radiation dose in percutaneous coronary intervention. J. Interv. Cardiol. 2006;19:237–244. [PubMed] [Google Scholar]

15. Huckman R. S., Pisano G. P. Adopting new technologies: Turf battles in coronary revascularization. N. Engl. J. Med. 2005;352:857–859. [PubMed] [Google Scholar]

16. Rosamond W., et al. Heart disease and stroke statistics—2007 update—a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115:e69–e171. [PubMed] [Google Scholar]

17. McCormick V. A., Schultz C. C., Hollingsworth-Schuler V., Campbell J. M., O'Neill W. W., Ramos R. Reducing radiation dose in the cardiac catheterization laboratory by design alterations and staff education. Am. J. Cardiol. 2002;90:903–905. [PubMed] [Google Scholar]

18. Camm A. J., Reid J., Raphael M., Wilde P., Boyle R., Clarke M., Qureshi S., Rothman M., Shaw A. Radiation hazards to the cardiologist—a report of a Subcommittee of the British-Cardiac-Society. Br. Heart J. 1993;70:489–496. [PMC free article] [PubMed] [Google Scholar]

19. Tsapaki V., Kottou S., Kollaros N., Dafnomili P., Koutelou M., Vano E., Neofotistou V. Comparison of a conventional and a flat-panel digital system in interventional cardiology procedures. Br. J. Radiol. 2004;77:562–567. [PubMed] [Google Scholar]

20. Vano E., Geiger B., Schreiner A., Back C., Beissel J. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality. Phys. Med. Biol. 2005;50:5731–5742. [PubMed] [Google Scholar]

21. Ector J., Dragusin O., Adriaenssens B., Huybrechts W., Willems R., Ector H., Heidbuechel H. Obesity is a major determinant of radiation dose in patients undergoing pulmonary vein isolation for atrial fibrillation. J. Am. Coll. Cardiol. 2007;50:234–242. [PubMed] [Google Scholar]

22. Cusma J. T., Bell M. R., Wondrow M. A., Taubel J. P., Holmes D. R. Real-time measurement of radiation exposure to patients during diagnostic coronary angiography and percutaneous interventional procedures. J. Am. Coll. Cardiol. 1999;33:427–435. [PubMed] [Google Scholar]

23. Detorie M., Mahesh M., Schueler B. A. Reducing occupational exposure from fluoroscopy. J. Am. Coll. Radiol. 2007;4:335–337. [PubMed] [Google Scholar]

24. Pratt T. A., Shaw A. J. Factors affecting the radiation-dose to the lens of the eye during cardiac-catheterization procedures. Br. J. Radiol. 1993;66:346–350. [PubMed] [Google Scholar]

25. Theocharopoulos N., Damilakis J., Perisinakis K., Manios E., Vardas P., Gourtsoyiannis N. Occupational exposure in the electrophysiology laboratory: quantifying and minimizing radiation burden. Br. J. Radiol. 2006;79:644–651. [PubMed] [Google Scholar]

26. Grant S. C. D., Faragher E. B., Hufton A. P., Bennett D. H. Use of a remotely controlled mechanical pump for coronary arteriography—a study of radiation exposure and quality implications. Br. Heart J. 1993;70:479–484. [PMC free article] [PubMed] [Google Scholar]

27. Limacher M. C., Douglas P. S., Germano G., Laskey W. K., Lindsay B. D., McKetty M. H., Moore M. E., Park J. K., Prigent F. M., Walsh M. N. Radiation safety in the practice of cardiology. J. Am. Coll. Cardiol. 1998;31:892–913. [PubMed] [Google Scholar]

28. Park T. H., Eichling J. O., Schechtman K. B., Bromberg B. I., Smith J. M., Lindsay B. D. Risk of radiation induced skin injuries from arrhythmia ablation procedures. Pace. 1996;19:1363–1369. [PubMed] [Google Scholar]

29. Larrazet F., Dibie A., Philippe F., Palau R., Klausz R., Laborde F. Factors influencing fluoroscopy time and dose-area product values during ad hoc one-vessel percutaneous coronary angioplasty. Br. J. Radiol. 2003;76:473–477. [PubMed] [Google Scholar]

30. Tsapaki V., Kottou S., Vano E., Faulkner K., Giannouleas J., Padovani R., Kyrozi E., Koutelou M., Vardalaki E., Neofotistou V. Patient dose values in a dedicated Greek cardiac centre. Br. J. Radiol. 2003;76:726–730. [PubMed] [Google Scholar]

31. Renaud L. A 5-year follow-up of the radiation exposure to in-room personnel during cardiac catheterization. Health Phys. 1992;62:10–15. [PubMed] [Google Scholar]

32. Watson L. E., Riggs M. W., Bourland P. D. Radiation exposure during cardiology fellowship training. Health Phys. 1997;73:690–693. [PubMed] [Google Scholar]

33. Kottou S., Neofotistou V., Tsapaki V., Lobotessi H., Manetou A., Molfetas M. G. Personnel doses in haemodynamic units in Greece. Radiat. Prot. Dosim. 2001;94:121–124. [PubMed] [Google Scholar]

34. Coulden R. A., Readman L. P. Coronary angiography—an analysis of Radiographic Practice in the UK. Br. J. Radiol. 1993;66:327–331. [PubMed] [Google Scholar]

35. Linnemeier T. J., Klette M. A., Rothbaum D. A., Landin R. J., Ball M. W., Riddell R. V. Rail-type systems reduce radiation exposure and procedure time compared to over-the-wire coronary angioplasty systems. Circulation. 1992;86(Suppl II):I–445. [Google Scholar]

36. Linnemeier T. J., Mccallister S. H., Lips D. L., Klette M. A., Rothbaum D. A., Ball M. W., Landin R. J., Hodes Z. I., Riddell R. V. Radiation exposure—comparison of rapid exchange and conventional over-the-wire coronary angioplasty systems. Catheter. Cardio. Diagn. 1993;30:11–14. [PubMed] [Google Scholar]

37. Mooney M. R., Douglas J. S., Mooney J. F., Madison J. D., Brandenburg R. O., Fernald R., Vantassel R. A. Monorail Piccolino catheter—a new rapid exchange ultralow profile coronary angioplasty system. Catheter. Cardiovasc. Diagn. 1990;20:114–119. [PubMed] [Google Scholar]

38. Grant S. C. D., Bennett D. H., Mather J. M. Reduction of radiation exposure to the cardiologist during coronary angiography by the use of a remotely controlled mechanical pump for injection of contrast-medium. Catheter. Cardiovasc. Diagn. 1992;25:107–109. [PubMed] [Google Scholar]

39. Johnson L. W., Moore R. J., Balter S. Review of radiation safety in the cardiac-catheterization laboratory. Catheter. Cardiovasc. Diagn. 1992;25:186–194. [PubMed] [Google Scholar]

40. Lange H. W., von Boetticher H. Randomized comparison of operator radiation exposure during coronary angiography and intervention by radial or femoral approach. Catheter. Cardiovasc. Interv. 2006;67:12–16. [PubMed] [Google Scholar]

41. Le Heron J. C., Mitchell A. W. Scattered radiation doses during cardiac studies using a U-arm type fluoroscopy system. Australas Radiol. 1985;29:335–340. [PubMed] [Google Scholar]

42. Lindsay B. D., Eichling J. O., Ambos H. D., Cain M. E. Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. Am. J. Cardiol. 1992;70:218–223. [PubMed] [Google Scholar]

43. Mann J. T., Cubeddu G., Arrowood M. Operator radiation exposure in PTCA: comparison of radial and femoral approaches. J. Invasive Cardiol. 1996;8:D22–D25. [PubMed] [Google Scholar]

44. Whitby M., Martin C. J. A study of the distribution of dose across the hands of interventional radiologists and cardiologists. Br. J. Radiol. 2005;78:219–229. [PubMed] [Google Scholar]

45. Wholey M. H. Clinical dosimetry during angiographic examination—comments on coronary arteriography. Circulation. 1974;50:627–631. [PubMed] [Google Scholar]

46. Vano E., Gonzalez L., Guibelalde E., Fernandez J. M., Ten J. I. Radiation exposure to medical staff in interventional and cardiac radiology. Br. J. Radiol. 1998;71:954–960. [PubMed] [Google Scholar]

47. Jeans S. P., Faulkner K., Love H. G., Bardsley R. A. An investigation of the radiation-dose to staff during cardiac radiological studies. Br. J. Radiol. 1985;58:419–428. [PubMed] [Google Scholar]

48. Balter S. Stray radiation in the cardiac catheterisation laboratory. Radiat. Prot. Dosim. 2001;94:183–188. [PubMed] [Google Scholar]

49. Balter S., Sones F. M., Brancato R. Radiation exposure to operator performing cardiac angiography with U-arm systems. Circulation. 1978;58:925–932. [PubMed] [Google Scholar]

50. Gustafsson M., Lunderquist A. Personnel exposure to radiation at some angiographic procedures. Radiology. 1981;140:807–811. [PubMed] [Google Scholar]

51. Kaude J., Svahn G. Absorbed, gonad and integral doses to patient and personnel from angiographic procedures. Acta Radiol. Diagn. 1974;15:454–464. [PubMed] [Google Scholar]

52. Rueter F. G. Physician and patient exposure during cardiac-catheterization. Circulation. 1978;58:134–139. [PubMed] [Google Scholar]

53. Chong N. S., Yin W. H., Chan P., Cheng M. C., Ko H. L., Jeng S. C., Lee J. J. S. Evaluation of absorbed radiation dose to working staff during cardiac catheterization procedures. Chin. Med. J. 2000;63:816–821. [PubMed] [Google Scholar]

54. Goni H., Papadopoulou D., Yakoumakis E., Stratigis N., Benos J., Siriopoulou V., Makri T., Georgiou E. Investigation of occupational radiation exposure during interventional cardiac catheterisations performed via radial artery. Radiat. Prot. Dosim. 2005;117:107–110. [PubMed] [Google Scholar]

55. Lima F. R. A., Khoury H. J., Hazin C. A., Luz L. P. Doses to the operating staff during interventional cardiology procedures. The 10th International Congress of the International Radiation Protection Association; Hiroshima. 2000. [Google Scholar]

56. Kicken P. J. H., Kemerink G. J., Schultz F. W., Zoetelief J., Broerse J. J., van Engelshoven J. M. A. Dosimetry of occupationally exposed persons in diagnostic and interventional arteriography. Part II: Assessment of effective dose. Radiat. Prot. Dosim. 1999;82:105–114. [Google Scholar]

57. Huyskens C. J., Hummel W. A. Data-analysis on patient exposures in cardiac angiography. Radiat. Prot. Dosim. 1995;57:475–480. [Google Scholar]

58. Pitney M. R., Allan R. M., Giles R. W., Mclean D., Mccredie M., Randell T., Walsh W. F. Modifying fluoroscopic views reduces operator radiation exposure during coronary angioplasty. J. Am. Coll. Cardiol. 1994;24:1660–1663. [PubMed] [Google Scholar]

59. Kuon E., Dahm J. B., Empen K., Robinson D. M., Reuter G., Wucherer M. Identification of less-irradiating tube angulations in invasive cardiology. J. Am. Coll. Cardiol. 2004;44:1420–1428. [PubMed] [Google Scholar]

60. Agarwal S. K., Friesen E. J., Huddleston A. L., Rao R. P. Effectiveness of glass lenses in reducing exposure to eyes. Radiology. 1978;129:810–811. [PubMed] [Google Scholar]

61. Bergstrom K., Jorulf H., Lofroth P. O. Eye lens protection for radiological personnel. Radiology. 1977;124:839–840. [PubMed] [Google Scholar]

62. Richman A. H., Chan B., Katz M. Effectiveness of lead lenses in reducing radiation exposure. Radiology. 1976;121:357–359. [PubMed] [Google Scholar]

63. Cousin A. J., Lawdahl R. B., Chakraborty D. P., Koehler R. E. The case for radioprotective eyewear facewear—practical implications and suggestions. Invest. Radiol. 1987;22:688–692. [PubMed] [Google Scholar]

64. Dash H., Leaman D. M. Operator radiation exposure during percutaneous trans-luminal coronary angioplasty. J. Am. Coll. Cardiol. 1984;4:725–728. [PubMed] [Google Scholar]

65. Marshall N. W., Faulkner K., Clarke P. An investigation into the effect of protective devices on the dose to radiosensitive organs in the head and neck. Br. J. Radiol. 1992;65:799–802. [PubMed] [Google Scholar]

66. Mcparland B. J., Nosil J., Burry B. A survey of the radiation exposures received by the staff at 2 cardiac-catheterization laboratories. Br. J. Radiol. 1990;63:885–888. [PubMed] [Google Scholar]

67. Vano E., Fernandez J. M., Delgado V., Gonzalez L. Evaluation of tungsten and lead surgical gloves for radiation protection. 1995;68:855–858. [PubMed] [Google Scholar]

68. Balter S. Radiation safety in the cardiac catheterization laboratory: operational radiation safety. Catheter. Cardiovasc. Interv. 1999;47:347–353. [PubMed] [Google Scholar]

69. Wyart P., Dumant D., Gourdier M., Nassar F., Bouthillon J. C., Chestier Y. Contribution of self-surveillance of the personnel by electronic radiation dosemeters in invasive cardiology. Arch. Mal. Coeur. Vaiss. 1997;90:233–238. [PubMed] [Google Scholar]

What will efficiently minimize radiation exposure to the patient?

Shielding Lead or lead equivalent shielding for X-rays and gamma rays is an effective way to reduce radiation exposure. There are various types of shielding used in the reduction of radiation exposure including lead aprons, mobile lead shields, lead glasses, and lead barriers.

What is the best method to reduce exposure from scatter radiation?

Best Practices, general:.
Always position yourself well away from the potential scatter radiation fields. ... .
Always make use of available moveable barriers to increase shielding between you and scatter radiation..
Close collimation reduces scatter and significantly reduces personnel dose, and dose to the patient..

Which of the following will reduce patient exposure during fluoroscopy?

Minimization of fluoroscopy time has been proven to be one of the most effective ways of reducing radiation dose to the patient and staff during fluoroscopy.

Which of the following will reduce exposure to the patient as well as improve image contrast?

Which of the following will reduce exposure to the patient as well as improve image contrast? Beam restriction (collimation) will produce less scatter radiation.