What are two factors that determine whether a particle will pass through a cell membrane?

1. Stein WD, Lieb WR. Transport and diffusion across cell membranes. 1st. Orlando, FL: Academic; 1986. [Google Scholar]

2. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 5th. New York: Garland Science; 2007. [Google Scholar]

3. Di L, Artursson P, Avdeef A, et al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today. 2012;17:905–912. [PubMed] [Google Scholar]

4. Engelman DM. Membranes are more mosaic than fluid. Nature. 2005;438:578–580. [PubMed] [Google Scholar]

5. Jacobson K, Mouritsen OG, Anderson RGW. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol. 2007;9:7–14. [PubMed] [Google Scholar]

6. Koichi K, Michiya F, Makoto N. Lipid components of two different regions of an intestinal epithelial cell membrane of mouse. Biochim Biophys Acta. 1974;369:222–233. [PubMed] [Google Scholar]

7. Marsh D, Horváth LI. Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. Biochim Biophys Acta. 1998;1376:267–296. [PubMed] [Google Scholar]

8. Lee AG. Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta. 2003;1612:1–40. [PubMed] [Google Scholar]

9. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993;294:1–14. [PMC free article] [PubMed] [Google Scholar]

10. Leventis R, Silvius JR. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001;81:2257–2267. [PMC free article] [PubMed] [Google Scholar]

11. Steck TL, Ye J, Lange Y. Probing red cell membrane cholesterol movement with cyclodextrin. Biophys J. 2002;83:2118–2125. [PMC free article] [PubMed] [Google Scholar]

12. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44. [PubMed] [Google Scholar]

13. Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11:510–520. [PubMed] [Google Scholar]

15. Orsi M, Essex JW. Passive permeation across lipid bilayers: a literature review. Molecular simulations and biomembranes: from biophysics to function. 2010:76–90. [Google Scholar]

16. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41:1007–1010. [PubMed] [Google Scholar]

17. Sugano K, Kansy M, Artursson P, et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov. 2010;9:597–614. [PubMed] [Google Scholar]

18. Di L, Whitney-Pickett C, Umland JP, et al. Development of a new permeability assay using low-efflux MDCKII cells. J Pharm Sci. 2011;100:4974–4985. [PubMed] [Google Scholar]

19. Shamu CE, Story CM, Rapoport TA, Ploegh HL. The pathway of Us11-dependent degradation of Mhc class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol. 1999;147:45–58. [PMC free article] [PubMed] [Google Scholar]

20. Bartz R, Fan H, Zhang J, et al. Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. Biochem J. 2011;435:475–487. [PubMed] [Google Scholar]

21. Bittner MA, Holz RW. Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells. J Neurochem. 1988;51:451–456. [PubMed] [Google Scholar]

22. Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462:182–188. [PMC free article] [PubMed] [Google Scholar]

23. Chang YS, Graves B, Guerlavais V, et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci. 2013;110:E3445–E3454. [PMC free article] [PubMed] [Google Scholar]

24. Bonner DK, Leung C, Chen-Liang J, et al. Intracellular trafficking of polyamido-amine-poly(ethylene glycol) block copolymers in DNA delivery. Bioconjug Chem. 2011;22:1519–1525. [PMC free article] [PubMed] [Google Scholar]

25. Richard JP, Melikov K, Vives E, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278:585–590. [PubMed] [Google Scholar]

26. Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702. [PubMed] [Google Scholar]

27. Cebrian I, Visentin G, Blanchard N, et al. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell. 2011;147:1355–1368. [PubMed] [Google Scholar]

28. Yu P, Liu B, Kodadek T. A high-throughput assay for assessing the cell permeability of combinatorial libraries. Nat Biotechnol. 2005;23:746–751. [PubMed] [Google Scholar]

29. Holub JM, LaRochelle JR, Appelbaum JS, Schepartz A. Improved assays for determining the cytosolic access of peptides, proteins, and their mimetics. Biochemistry (Mosc) 2013;52:9036–9046. [PMC free article] [PubMed] [Google Scholar]

30. Zlokarnik G, Negulescu PA, Knapp TE, et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science. 1998;279:84–88. [PubMed] [Google Scholar]

31. Bordonaro M. Modular Cre/lox system and genetic therapeutics for colorectal cancer. J Biomed Biotechnol. 2009 [PMC free article] [PubMed] [Google Scholar]

32. Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell. Cell. 1978;15:245–250. [PubMed] [Google Scholar]

33. Eiklid K, Olsnes S, Pihl A. Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells. Exp Cell Res. 1980;126:321–326. [PubMed] [Google Scholar]

34. Diamond JM, Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol. 1974;17:121–154. [PubMed] [Google Scholar]

35. Finkelstein A. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol. 1976;68:127–135. [PMC free article] [PubMed] [Google Scholar]

36. Subczynski WK, Hyde JS, Kusumi A. Oxygen permeability of phosphatidylcholine- cholesterol membranes. Proc Natl Acad Sci. 1989;86:4474–4478. [PMC free article] [PubMed] [Google Scholar]

37. Gutknecht J, Bisson MA, Tosteson FC. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol. 1977;69:779–794. [PMC free article] [PubMed] [Google Scholar]

38. Walter A, Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90:207–217. [PubMed] [Google Scholar]

39. Orbach E, Finkelstein A. The nonelectrolyte permeability of planar lipid bilayer membranes. J Gen Physiol. 1980;75:427–436. [PMC free article] [PubMed] [Google Scholar]

40. Papahadjopoulos D, Nir S, Oki S. Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochim Biophys Acta. 1972;266:561–583. [PubMed] [Google Scholar]

41. Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev. 1989;10:232–274. [PubMed] [Google Scholar]

42. Giorgi EP, Stein WD. The transport of steroids into animal cells in culture. Endocrinology. 1981;108:688–697. [PubMed] [Google Scholar]

43. Bockus AT, McEwen CM, Lokey RS. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr Top Med Chem. 2013;13:821–836. [PubMed] [Google Scholar]

44. Augustijns PF, Bradshaw TP, Gan LSL, et al. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporine A transport. Biochem Biophys Res Commun. 1993;197:360–365. [PubMed] [Google Scholar]

45. Rezai T, Bock JE, Zhou MV, et al. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc. 2006;128:14073–14080. [PubMed] [Google Scholar]

46. Guimarães CRW, Mathiowetz AM, Shalaeva M, et al. Use of 3D properties to characterize beyond rule-of-5 property space for passive permeation. J Chem Inf Model. 2012;52:882–890. [PubMed] [Google Scholar]

47. Hediger MA, Clémençon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med. 2013;34:95–107. [PMC free article] [PubMed] [Google Scholar]

48. Saier MH, Reddy VS, Tamang DG, Vastermark A. The transporter classification database. Nucleic Acids Res. 2013;42:D251–D258. [PMC free article] [PubMed] [Google Scholar]

49. Hediger MA. The ABCs of membrane transporters in health and disease (SLC series) Mol Aspects Med. 2013;34(2–3):95–752. [PMC free article] [PubMed] [Google Scholar]

50. Kew JNC, Davies CH. Ion channels: from structure to function. Oxford: Oxford University Press; 2010. [Google Scholar]

51. Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605. [PubMed] [Google Scholar]

52. Toyoshima C, Kanai R, Cornelius F. First crystal structures of Na+, K+-ATPase: new light on the oldest ion pump. Structure. 2011;19:1732–1738. [PubMed] [Google Scholar]

53. Duax WL, Griffin JF, Langs DA, et al. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics. Pept Sci. 1996;40:141–155. [PubMed] [Google Scholar]

54. Wallace BA. Recent advances in the high resolution structures of bacterial channels: gramicidin A. J Struct Biol. 1998;121:123–141. [PubMed] [Google Scholar]

55. Zheng L, Kostrewa D, Bernèche S, et al. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci U S A. 2004;101:17090–17095. [PMC free article] [PubMed] [Google Scholar]

56. Andrade SLA, Einsle O. The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol. 2007;24:357–365. [PubMed] [Google Scholar]

57. Shayakul C, Clémençon B, Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med. 2013;34:313–322. [PubMed] [Google Scholar]

58. Ishibashi K, Hara S, Kondo S. Aquaporin water channels in mammals. Clin Exp Nephrol. 2009;13:107–117. [PubMed] [Google Scholar]

59. Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. 2013 [PubMed] [Google Scholar]

60. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–138. [PMC free article] [PubMed] [Google Scholar]

61. Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. Curr Top Membr. 2012;70:1–28. [PubMed] [Google Scholar]

62. Young JD, Yao SYM, Baldwin JM, et al. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med. 2013;34:529–547. [PubMed] [Google Scholar]

63. Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med. 2013;34:323–336. [PMC free article] [PubMed] [Google Scholar]

64. Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 2006;91:140–149. [PubMed] [Google Scholar]

65. Chen Z-S, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278:3226–3245. [PMC free article] [PubMed] [Google Scholar]

66. Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:27–34. [PMC free article] [PubMed] [Google Scholar]

67. Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012;83:1084–1103. [PMC free article] [PubMed] [Google Scholar]

68. Langel U. Handbook of cell-penetrating peptides. 2nd. Boca Raton: CRC Press; 2010. [Google Scholar]

69. Sagan S, Burlina F, Alves ID, et al. Homeoproteins and homeoprotein-derived peptides: going in and out. Curr Pharm Des. 2013;19:2851–2862. [PubMed] [Google Scholar]

70. Schmidt N, Mishra A, Lai GH, Wong GCL. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010;584:1806–1813. [PubMed] [Google Scholar]

71. Futaki S, Hirose H, Nakase I. Arginine-rich peptides: methods of translocation through biological membranes. Curr Pharm Des. 2013;19:2863–2868. [PubMed] [Google Scholar]

72. Tyagi M, Rusnati M, Presta M, Giacca M. Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem. 2001;276:3254–3261. [PubMed] [Google Scholar]

73. Su Y, Waring AJ, Ruchala P, Hong M. Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR. Biochemistry (Mosc) 2010;49:6009–6020. [PMC free article] [PubMed] [Google Scholar]

74. Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10:310–315. [PubMed] [Google Scholar]

75. Nakase I, Tadokoro A, Kawabata N, et al. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry (Mosc) 2007;46:492–501. [PubMed] [Google Scholar]

76. Yesylevskyy S, Marrink S-J, Mark AE. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophys J. 2009;97:40–49. [PMC free article] [PubMed] [Google Scholar]

77. Herce HD, Garcia AE, Litt J, et al. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J. 2009;97:1917–1925. [PMC free article] [PubMed] [Google Scholar]

78. Mishra A, Lai GH, Schmidt NW, et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci. 2011;108:16883–16888. [PMC free article] [PubMed] [Google Scholar]

79. Kawamoto S, Miyakawa T, Takasu M, et al. Cell-penetrating peptide induces various deformations of lipid bilayer membrane: inverted micelle, double bilayer, and trans-membrane. Int J Quantum Chem. 2012;112:178–183. [Google Scholar]

80. Huang K, García AE. Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation. Biophys J. 2013;104:412–420. [PMC free article] [PubMed] [Google Scholar]

81. Jones S, Howl J. Enantiomer-specific bioactivities of peptidomimetic analogues of mastoparan and mitoparan: characterization of inverso mastoparan as a highly efficient cell penetrating peptide. Bioconjug Chem. 2012;23:47–56. [PubMed] [Google Scholar]

82. Tréhin R, Krauss U, Beck-Sickinger AG, et al. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47–57) through well-differentiated epithelial models. Pharm Res. 2004;21:1248–1256. [PubMed] [Google Scholar]

83. Foerg C, Merkle HP. On the biomedical promise of cell penetrating peptides: limits versus prospects. J Pharm Sci. 2008;97:144–162. [PubMed] [Google Scholar]

84. Sandvig K, van Deurs B. Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther. 2005;12:865–872. [PubMed] [Google Scholar]

85. Falnes PØ, Sandvig K. Penetration of protein toxins into cells. Curr Opin Cell Biol. 2000;12:407–413. [PubMed] [Google Scholar]

87. De Virgilio M, Lombardi A, Caliandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins. 2010;2:2699–2737. [PMC free article] [PubMed] [Google Scholar]

88. Spooner RA, Lord JM. How ricin and shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. In: Mantis N, editor. Ricin shiga toxins. Berlin: Springer; 2012. pp. 19–40. [PubMed] [Google Scholar]

89. Sandvig K, Skotland T, van Deurs B, Klokk TI. Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol. 2013;140:317–326. [PubMed] [Google Scholar]

90. Wernick NLB, Chinnapen DJ-F, Cho JA, Lencer WI. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins. 2010;2:310–325. [PMC free article] [PubMed] [Google Scholar]

91. Cho JA, Chinnapen DJ-F, Aamar E, et al. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins. Front Cell Infect Microbiol. 2012 [PMC free article] [PubMed] [Google Scholar]

92. Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem. 2010;79:803–833. [PubMed] [Google Scholar]

93. Sriwilaijaroen N, Suzuki Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:226–249. [PMC free article] [PubMed] [Google Scholar]

94. Tsai B. Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol. 2007;23:23–43. [PubMed] [Google Scholar]

95. Johnson J, Banerjee M. Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci. 2008;9:16–27. [PubMed] [Google Scholar]

96. Moyer CL, Nemerow GR. Viral weapons of membrane destruction: variable modes of membrane penetration by non-enveloped viruses. Curr Opin Virol. 2011;1:44–99. [PMC free article] [PubMed] [Google Scholar]

97. Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol. 2013;5:a013250. [PMC free article] [PubMed] [Google Scholar]

98. Suomalainen M, Greber UF. Uncoating of non-enveloped viruses. Curr Opin Virol. 2013;3:27–33. [PubMed] [Google Scholar]

99. Veber DF, Johnson SR, Cheng H-Y, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–2623. [PubMed] [Google Scholar]

100. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25. [PubMed] [Google Scholar]

101. Faller B, Ottaviani G, Ertl P, et al. Evolution of the physicochemical properties of marketed drugs: can history foretell the future? Drug Discov Today. 2011;16:976–984. [PubMed] [Google Scholar]

102. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43:3714–3717. [PubMed] [Google Scholar]

103. Xiang T-X, Anderson BD. Influence of chain ordering on the selectivity of dipalmi-toylphosphatidylcholine bilayer membranes for permeant size and shape. Biophys J. 1998;75:2658–2671. [PMC free article] [PubMed] [Google Scholar]

104. Kuhn B, Mohr P, Stahl M. Intramolecular hydrogen bonding in medicinal chemistry. J Med Chem. 2010;53:2601–2611. [PubMed] [Google Scholar]

105. Mayer PT, Xiang T-X, Anderson BD. Independence of substituent contributions to the transport of small-molecule permeants in lipid bilayer. AAPS Pharm Sci. 2000;2:40–52. [PMC free article] [PubMed] [Google Scholar]

106. Ulander J, Haymet ADJ. Permeation across hydrated DPPC lipid bilayers: simulation of the titrable amphiphilic drug valproic acid. Biophys J. 2003;85:3475–3484. [PMC free article] [PubMed] [Google Scholar]

107. Xiang T-X, Anderson BD. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv Drug Deliv Rev. 2006;58:1357–1378. [PubMed] [Google Scholar]

108. Bennett WFD, MacCallum JL, Hinner MJ, et al. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J Am Chem Soc. 2009;131:12714–12720. [PubMed] [Google Scholar]

109. Maeda K, Sugiyama Y. Transporter biology in drug approval: regulatory aspects. Mol Aspects Med. 2013;34:711–718. [PubMed] [Google Scholar]

110. Dobson PD, Patel Y, Kell DB. “Metabolite-likeness” as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov Today. 2009;14:31–40. [PubMed] [Google Scholar]

111. Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach. Expert Opin Drug Deliv. 2012;9:1001–1013. [PubMed] [Google Scholar]

112. Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv Drug Deliv Rev. 2004;56:1437–1452. [PubMed] [Google Scholar]

113. Keppler A, Arrivoli C, Sironi L, Ellenberg J. Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques. 2006;41:167–170. 172, 174–175. [PubMed] [Google Scholar]

114. Tsien RY. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981;290:527–528. [PubMed] [Google Scholar]

115. Ries RS, Choi H, Blunck R, et al. Black lipid membranes: visualizing the structure, dynamics, and substrate dependence of membranes. J Phys Chem B. 2004;108:16040–16049. [Google Scholar]

116. Melikyan GB, Deriy BN, Ok DC, Cohen FS. Voltage-dependent translocation of R18 and DiI across lipid bilayers leads to fluorescence changes. Biophys J. 1996;71:2680–2691. [PMC free article] [PubMed] [Google Scholar]

117. Kleinfeld AM, Chu P, Storch J. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles. Biochemistry (Mosc) 1997;36:5702–5711. [PubMed] [Google Scholar]

118. Homolya L, Holló Z, Germann UA, et al. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem. 1993;268:21493–21496. [PubMed] [Google Scholar]

119. Chidley C, Haruki H, Pedersen MG, et al. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol. 2011;7:375–383. [PubMed] [Google Scholar]

120. Driggers EM, Hale SP, Lee J, Terrett NK. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat Rev Drug Discov. 2008;7:608–624. [PubMed] [Google Scholar]

121. Giordanetto F, Revell JD, Knerr L, et al. Stapled vasoactive intestinal peptide (VIP) derivatives improve VPAC2 agonism and glucose-dependent insulin secretion. ACS Med Chem Lett. 2013;4:1163–1168. [PMC free article] [PubMed] [Google Scholar]

122. Bock JE, Gavenonis J, Kritzer JA. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol. 2013;8:488–499. [PMC free article] [PubMed] [Google Scholar]

123. Kwon Y-U, Kodadek T. Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem Biol. 2007;14:671–677. [PubMed] [Google Scholar]

124. White TR, Renzelman CM, Rand AC, et al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol. 2011;7:810–817. [PMC free article] [PubMed] [Google Scholar]

125. Malakoutikhah M, Prades R, Teixidó M, Giralt E. N-methyl phenylalanine-rich peptides as highly versatile blood-brain barrier shuttles. J Med Chem. 2010;53:2354–2363. [PubMed] [Google Scholar]

126. Ovadia O, Greenberg S, Chatterjee J, et al. The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. Mol Pharm. 2011;8:479–487. [PubMed] [Google Scholar]

127. Azzarito V, Long K, Murphy NS, Wilson AJ. Inhibition of α-helix-mediated protein- protein interactions using designed molecules. Nat Chem. 2013;5:161–173. [PubMed] [Google Scholar]

128. Kim Y-W, Grossmann TN, Verdine GL. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc. 2011;6:761–771. [PubMed] [Google Scholar]

129. Patgiri A, Menzenski MZ, Mahon AB, Arora PS. Solid-phase synthesis of short α-helices stabilized by the hydrogen bond surrogate approach. Nat Protoc. 2010;5:1857–1865. [PMC free article] [PubMed] [Google Scholar]

130. Miller SE, Kallenbach NR, Arora PS. Reversible alpha-helix formation controlled by a hydrogen bond surrogate. Tetrahedron. 2012;68:4434–4437. [PMC free article] [PubMed] [Google Scholar]

131. Patgiri A, Yadav KK, Arora PS, Bar-Sagi D. An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol. 2011;7:585–587. [PMC free article] [PubMed] [Google Scholar]

132. Okamoto T, Zobel K, Fedorova A, et al. Stabilizing the pro-apoptotic BimBH3 Helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol. 2013;8:297–302. [PubMed] [Google Scholar]

133. Bird GH, Gavathiotis E, LaBelle JL, et al. Distinct BimBH3 (BimSAHB) stapled peptides for structural and cellular studies. ACS Chem Biol. 2014;9:831–837. [PMC free article] [PubMed] [Google Scholar]

134. Okamoto T, Segal D, Zobel K, et al. Further insights into the effects of pre-organizing the BimBH3 helix. ACS Chem Biol. 2014;9:838–839. [PubMed] [Google Scholar]

135. Verdine GL, Hilinski GJ. Stapled pep-tides for intracellular drug targets. In: Dane Wittrup K, Verdine GL, editors. Methods enzymol. New York: Academic; 2012. pp. 3–33. [PubMed] [Google Scholar]

136. Bird GH, Christian Crannell W, Walensky LD. Chemical synthesis of hydrocarbon-stapled peptides for protein interaction research and therapeutic targeting. Curr Protoc Chem Biol. 2011;3(3):99–117. [PMC free article] [PubMed] [Google Scholar]

137. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17:850–860. [PubMed] [Google Scholar]

138. Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design synthesis and applications. ACS Nano. 2014 [PubMed] [Google Scholar]

139. Appelbaum JS, LaRochelle JR, Smith BA, et al. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem Biol. 2012;19:819–830. [PMC free article] [PubMed] [Google Scholar]

140. Marschall ALJ, Frenzel A, Schirrmann T, et al. Targeting antibodies to the cytoplasm. mAbs. 2011;3:3–16. [PMC free article] [PubMed] [Google Scholar]

141. Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chem Soc Rev. 2011;40:3638–3655. [PubMed] [Google Scholar]

142. Du J, Jin J, Yan M, Lu Y. Synthetic nanocarriers for intracellular protein delivery. Curr Drug Metab. 2012;13:82–92. [PubMed] [Google Scholar]

143. Salmaso S, Caliceti P. Self assembling nanocomposites for protein delivery: supra-molecular interactions of soluble polymers with protein drugs. Int J Pharm. 2013;440:111–123. [PubMed] [Google Scholar]

144. Zhang Y, Yu L-C. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008;19:506–510. [PubMed] [Google Scholar]

145. Sharei A, Zoldan J, Adamo A, et al. A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci. 2013;110:2082–2087. [PMC free article] [PubMed] [Google Scholar]

146. Shalek AK, Robinson JT, Karp ES, et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci. 2010;107:1870–1875. [PMC free article] [PubMed] [Google Scholar]

147. Yosef N, Shalek AK, Gaublomme JT, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496:461–468. [PMC free article] [PubMed] [Google Scholar]

148. Lo SL, Wang S. Peptide-based nano-carriers for intracellular delivery of biologically active proteins. Organelle-specific pharmaceutical nanotechnology. 2010:323–336. [Google Scholar]

149. Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18:385–393. [PubMed] [Google Scholar]

150. Nakase I, Tanaka G, Futaki S. Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol Biosyst. 2013;9:855–861. [PubMed] [Google Scholar]

151. Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci. 1994;91:664–668. [PMC free article] [PubMed] [Google Scholar]

152. Nagahara H, Vocero-Akbani AM, Snyder EL, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med. 1998;4:1449–1452. [PubMed] [Google Scholar]

153. Morris MC, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19:1173–1176. [PubMed] [Google Scholar]

154. Harford-Wright E, Lewis KM, Vink R, Ghabriel MN. Evaluating the role of substance P in the growth of brain tumors. Neuroscience. 2014;261:85–94. [PubMed] [Google Scholar]

155. Rizk SS, Luchniak A, Uysal S, et al. An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proc Natl Acad Sci. 2009;106:11011–11015. [PMC free article] [PubMed] [Google Scholar]

156. Rizk SS, Misiura A, Paduch M, Kossiakoff AA. Substance P derivatives as versatile tools for specific delivery of various types of biomolecular cargo. Bioconjug Chem. 2011;23:42–46. [PMC free article] [PubMed] [Google Scholar]

157. Chatterjee S, Chaudhury S, McShan AC, et al. Structure and biophysics of type III secretion in bacteria. Biochemistry (Mosc) 2013;52:2508–2517. [PMC free article] [PubMed] [Google Scholar]

158. Carleton HA, Lara-Tejero M, Liu X, Galán JE. Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nat Commun. 2013;4:1590. [PMC free article] [PubMed] [Google Scholar]

159. Doerner JF, Febvay S, Clapham DE. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nat Commun. 2012;3:990. [PMC free article] [PubMed] [Google Scholar]

160. Dunstone MA, Tweten RK. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol. 2012;22:342–349. [PMC free article] [PubMed] [Google Scholar]

161. Provoda CJ, Stier EM, Lee K-D. Tumor cell killing enabled by listeriolysin O-liposome-mediated delivery of the protein toxin gelonin. J Biol Chem. 2003;278:35102–35108. [PubMed] [Google Scholar]

162. Pirie CM, Liu DV, Wittrup KD. Targeted cytolysins synergistically potentiate cytoplasmic delivery of gelonin immunotoxin. Mol Cancer Ther. 2013;12:1774–1782. [PMC free article] [PubMed] [Google Scholar]

163. Sandvig K, van Deurs B. Membrane traffic exploited by protein toxins. Annu Rev Cell Dev Biol. 2002;18:1–24. [PubMed] [Google Scholar]

164. Johannes L, Römer W. Shiga toxins— from cell biology to biomedical applications. Nat Rev Microbiol. 2010;8:105–116. [PubMed] [Google Scholar]

165. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med. 2007;58:221–237. [PubMed] [Google Scholar]

166. FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res. 2011;71:6300–6309. [PMC free article] [PubMed] [Google Scholar]

167. Lawrence MS, Phillips KJ, Liu DR. Supercharging proteins can impart unusual resilience. J Am Chem Soc. 2007;129:10110–10112. [PMC free article] [PubMed] [Google Scholar]

168. Cronican JJ, Thompson DB, Beier KT, et al. Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol. 2010;5:747–752. [PMC free article] [PubMed] [Google Scholar]

169. Cronican JJ, Beier KT, Davis TN, et al. A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. 2011;18:833–838. [PMC free article] [PubMed] [Google Scholar]

170. Weisbart RH, Noritake DT, Wong AL, et al. A conserved anti-DNA antibody idiotype associated with nephritis in murine and human systemic lupus erythematosus. J Immunol. 1990;144:2653–2658. [PubMed] [Google Scholar]

171. Hansen JE, Chan G, Liu Y, et al. Targeting cancer with a lupus autoantibody. Sci Transl Med. 2012;4 157ra142. [PMC free article] [PubMed] [Google Scholar]

172. Lawlor MW, Armstrong D, Viola MG, et al. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet. 2013;22:1525–1538. [PMC free article] [PubMed] [Google Scholar]

173. Kaczmarczyk SJ, Sitaraman K, Young HA, et al. Protein delivery using engineered virus-like particles. Proc Natl Acad Sci. 2011;108:16998–17003. [PMC free article] [PubMed] [Google Scholar]

174. Tao P, Mahalingam M, Marasa BS, et al. In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci. 2013;110:5846–5851. [PMC free article] [PubMed] [Google Scholar]

175. Mallery DL, McEwan WA, Bidgood SR, et al. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21) Proc Natl Acad Sci. 2010;107:19985–19990. [PMC free article] [PubMed] [Google Scholar]

176. Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol. 2008;5:e95–e103. [PubMed] [Google Scholar]

177. Zelphati O, Wang Y, Kitada S, et al. Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. 2001;276:35103–35110. [PubMed] [Google Scholar]

178. Benjaminsen RV, Mattebjerg MA, Henriksen JR, et al. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21:149–157. [PMC free article] [PubMed] [Google Scholar]

179. Behr J-P. The proton sponge: a trick to enter cells the viruses did not exploit. Chim Int J Chem. 1997;51:34–36. [Google Scholar]

180. Lynn DM, Langer R. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc. 2000;122:10761–10768. [Google Scholar]

181. Su X, Yang N, Wittrup KD, Irvine DJ. Synergistic antitumor activity from two-stage delivery of targeted toxins and endosome-disrupting nanoparticles. Biomacromolecules. 2013;14:1093–1102. [PMC free article] [PubMed] [Google Scholar]

182. Gu Z, Yan M, Hu B, et al. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009;9:4533–4538. [PubMed] [Google Scholar]

183. Yan M, Du J, Gu Z, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol. 2010;5:48–53. [PubMed] [Google Scholar]

184. Biswas A, Joo K-I, Liu J, et al. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano. 2011;5:1385–1394. [PubMed] [Google Scholar]

185. Malmsten M. Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA. Curr Opin Colloid Interface Sci. 2013;18:468–480. [Google Scholar]

186. Loosli H-R, Kessler H, Oschkinat H, et al. Peptide conformations. Part 31. The conformation of cyclosporin a in the crystal and in solution. Helv Chim Acta. 1985;68:682–704. [Google Scholar]

187. Bayer P, Kraft M, Ejchart A, et al. Structural studies of HIV-1 tat protein. J Mol Biol. 1995;247:529–535. [PubMed] [Google Scholar]

188. Feld GK, Thoren KL, Kintzer AF, et al. Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol. 2010;17:1383–1390. [PMC free article] [PubMed] [Google Scholar]

189. Varghese Gupta S, Gupta D, Sun J, et al. Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach. Mol Pharm. 2011;8:2358–2367. [PMC free article] [PubMed] [Google Scholar]

What are 2 factors that determine what can pass through the membrane and where?

The most important parameters that govern transmembrane diffusion are polarity and size. For example, small nonpolar gases such as O2 , CO2 , and N2 , and small polar molecules such as ethanol cross lipid membranes rapidly.

What are some factors that determine whether a particle will pass through a cell membrane?

There are 3 important factors that determine whether a molecule can move or cross through a cell membrane: 1) Molecular Size, 2) Concentration, and 3) Molecular Charge or Polarity.

What are two ways that substances pass through a cell membrane?

There are two basic ways that substances can cross the plasma membrane: passive transport, which requires no energy; and active transport, which requires energy.

What are the two main factors that determine membrane permeability?

The two main players in the cell membrane that affects its permeability are: The predominance of saturated or unsaturated fatty acids in the membrane: Shorter chain lengths and higher unsaturated fatty acids increase the membrane's permeability.