Is the process of comparing a value to the endpoints of numerical ranges to find a category in which the value belongs?

This topic is a compilation of functions, operators, and conditional expressions.

Show

To learn more about how to call functions, function call rules, the SAFE prefix, and special types of arguments, see Function calls.


OPERATORS AND CONDITIONALS

Operators

Operators are represented by special characters or keywords; they do not use function call syntax. An operator manipulates any number of data inputs, also called operands, and returns a result.

Common conventions:

  • Unless otherwise specified, all operators return NULL when one of the operands is NULL.
  • All operators will throw an error if the computation result overflows.
  • For all floating point operations, +/-inf and NaN may only be returned if one of the operands is +/-inf or NaN. In other cases, an error is returned.

Operator precedence

The following table lists all BigQuery operators from highest to lowest precedence, i.e. the order in which they will be evaluated within a statement.

Order of PrecedenceOperatorInput Data TypesNameOperator Arity
1 Field access operator JSON
STRUCT
Field access operator Binary
  Array subscript operator ARRAY Array position. Must be used with OFFSET or ORDINAL—see Array Functions . Binary
  JSON subscript operator JSON Field name or array position in JSON. Binary
2 + All numeric types Unary plus Unary
  - All numeric types Unary minus Unary
  ~ Integer or BYTES Bitwise not Unary
3 * All numeric types Multiplication Binary
  / All numeric types Division Binary
  || STRING, BYTES, or ARRAY<T> Concatenation operator Binary
4 + All numeric types, DATE with INT64 , INTERVAL Addition Binary
  - All numeric types, DATE with INT64 , INTERVAL Subtraction Binary
5 << Integer or BYTES Bitwise left-shift Binary
  >> Integer or BYTES Bitwise right-shift Binary
6 & Integer or BYTES Bitwise and Binary
7 ^ Integer or BYTES Bitwise xor Binary
8 | Integer or BYTES Bitwise or Binary
9 (Comparison Operators) = Any comparable type. See Data Types for a complete list. Equal Binary
  < Any comparable type. See Data Types for a complete list. Less than Binary
  > Any comparable type. See Data Types for a complete list. Greater than Binary
  <= Any comparable type. See Data Types for a complete list. Less than or equal to Binary
  >= Any comparable type. See Data Types for a complete list. Greater than or equal to Binary
  !=, <> Any comparable type. See Data Types for a complete list. Not equal Binary
  [NOT] LIKE STRING and byte Value does [not] match the pattern specified Binary
  [NOT] BETWEEN Any comparable types. See Data Types for a complete list. Value is [not] within the range specified Binary
  [NOT] IN Any comparable types. See Data Types for a complete list. Value is [not] in the set of values specified Binary
  IS [NOT] NULL All Value is [not] NULL Unary
  IS [NOT] TRUE BOOL Value is [not] TRUE. Unary
  IS [NOT] FALSE BOOL Value is [not] FALSE. Unary
10 NOT BOOL Logical NOT Unary
11 AND BOOL Logical AND Binary
12 OR BOOL Logical OR Binary

Operators with the same precedence are left associative. This means that those operators are grouped together starting from the left and moving right. For example, the expression:

x AND y AND z

is interpreted as

( ( x AND y ) AND z )

The expression:

x * y / z

is interpreted as:

( ( x * y ) / z )

All comparison operators have the same priority, but comparison operators are not associative. Therefore, parentheses are required in order to resolve ambiguity. For example:

(x < y) IS FALSE

Field access operator

expression.fieldname[. ...]

Description

Gets the value of a field. Alternatively known as the dot operator. Can be used to access nested fields. For example, expression.fieldname1.fieldname2.

Input types

  • STRUCT
  • JSON

Return type

  • For STRUCT: SQL data type of fieldname. If a field is not found in the struct, an error is thrown.
  • For JSON: JSON. If a field is not found in a JSON value, a SQL NULL is returned.

Example

In the following example, the expression is t.customer and the field access operations are .address and .country. An operation is an application of an operator (.) to specific operands (in this case, address and country, or more specifically, t.customer and address, for the first operation, and t.customer.address and country for the second operation).

WITH orders AS (
  SELECT STRUCT(STRUCT('Yonge Street' AS street, 'Canada' AS country) AS address) AS customer
)
SELECT t.customer.address.country FROM orders AS t;

+---------+
| country |
+---------+
| Canada  |
+---------+

Array subscript operator

array_expression[array_subscript_specifier]

array_subscript_specifier:
  position_keyword(index)

position_keyword:
  { OFFSET | SAFE_OFFSET | ORDINAL | SAFE_ORDINAL }

Description

Gets a value from an array at a specific location.

Input types

  • array_expression: The input array.
  • position_keyword: Where the index for the array should start and how out-of-range indexes are handled. Your choices are:
    • OFFSET: The index starts at zero. Produces an error if the index is out of range.
    • SAFE_OFFSET: The index starts at zero. Returns NULL if the index is out of range.
    • ORDINAL: The index starts at one. Produces an error if the index is out of range.
    • SAFE_ORDINAL: The index starts at one. Returns NULL if the index is out of range.
  • index: An integer that represents a specific position in the array.

Return type

T where array_expression is ARRAY<T>.

Examples

In this example, the array subscript operator is used to return values at specific locations in item_array. This example also shows what happens when you reference an index (6) in an array that is out of range. If the SAFE prefix is included, NULL is returned, otherwise an error is produced.

WITH Items AS (SELECT ["coffee", "tea", "milk"] AS item_array)
SELECT
  item_array,
  item_array[OFFSET(1)] AS item_offset,
  item_array[ORDINAL(1)] AS item_ordinal,
  item_array[SAFE_OFFSET(6)] AS item_safe_offset,
FROM Items

+----------------------------------+--------------+--------------+------------------+
| item_array                       | item_offset  | item_ordinal | item_safe_offset |
+----------------------------------+--------------+--------------+------------------+
| [coffee, tea, milk]              | tea          | coffee       | NULL             |
+----------------------------------+--------------+--------------+------------------+

In the following example, when you reference an index in an array that is out of range and the SAFE prefix is not included, an error is produced.

WITH Items AS (SELECT ["coffee", "tea", "milk"] AS item_array)
SELECT
  item_array[OFFSET(6)] AS item_offset
FROM Items

-- Error. OFFSET(6) is out of range.

JSON subscript operator

json_expression[array_element_id]
json_expression[field_name]

Description

Gets a value of an array element or field in a JSON expression. Can be used to access nested data.

Input types

  • JSON expression: The JSON expression that contains an array element or field to return.
  • [array_element_id]: An INT64 expression that represents a zero-based index in the array. If a negative value is entered, or the value is greater than or equal to the size of the array, or the JSON expression doesn't represent a JSON array, a SQL NULL is returned.
  • [field_name]: A STRING expression that represents the name of a field in JSON. If the field name is not found, or the JSON expression is not a JSON object, a SQL NULL is returned.

Return type

JSON

Example

In the following example:

  • json_value is a JSON expression.
  • .class is a JSON field access.
  • .students is a JSON field access.
  • [0] is a JSON subscript expression with an element offset that accesses the zeroth element of an array in the JSON value.
  • ['name'] is a JSON subscript expression with a field name that accesses a field.
SELECT json_value.class.students[0]['name'] AS first_student
FROM
  UNNEST(
    [
      JSON '{"class" : {"students" : [{"name" : "Jane"}]}}',
      JSON '{"class" : {"students" : []}}',
      JSON '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'])
    AS json_value;

+-----------------+
| first_student   |
+-----------------+
| "Jane"          |
| NULL            |
| "John"          |
+-----------------+

Arithmetic operators

All arithmetic operators accept input of numeric type T, and the result type has type T unless otherwise indicated in the description below:

NameSyntax
Addition X + Y
Subtraction X - Y
Multiplication X * Y
Division X / Y
Unary Plus + X
Unary Minus - X

NOTE: Divide by zero operations return an error. To return a different result, consider the IEEE_DIVIDE or SAFE_DIVIDE functions.

Result types for Addition, Subtraction and Multiplication:

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64INT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

Result types for Division:

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64FLOAT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

Result types for Unary Plus:

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTINT64 NUMERIC BIGNUMERIC FLOAT64

Result types for Unary Minus:

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTINT64 NUMERIC BIGNUMERIC FLOAT64

Date arithmetics operators

Operators '+' and '-' can be used for arithmetic operations on dates.

date_expression + int64_expression
int64_expression + date_expression
date_expression - int64_expression

Description

Adds or subtracts int64_expression days to or from date_expression. This is equivalent to DATE_ADD or DATE_SUB functions, when interval is expressed in days.

Return Data Type

DATE

Example

SELECT DATE "2020-09-22" + 1 AS day_later, DATE "2020-09-22" - 7 AS week_ago

+------------+------------+
| day_later  | week_ago   |
+------------+------------+
| 2020-09-23 | 2020-09-15 |
+------------+------------+

Datetime subtraction

date_expression - date_expression
timestamp_expression - timestamp_expression
datetime_expression - datetime_expression

Description

Computes the difference between two datetime values as an interval.

Return Data Type

INTERVAL

Example

SELECT
  DATE "2021-05-20" - DATE "2020-04-19" AS date_diff,
  TIMESTAMP "2021-06-01 12:34:56.789" - TIMESTAMP "2021-05-31 00:00:00" AS time_diff

+-------------------+------------------------+
| date_diff         | time_diff              |
+-------------------+------------------------+
| 0-0 396 0:0:0     | 0-0 0 36:34:56.789     |
+-------------------+------------------------+

Interval arithmetic operators

Addition and subtraction

date_expression + interval_expression = DATETIME
date_expression - interval_expression = DATETIME
timestamp_expression + interval_expression = TIMESTAMP
timestamp_expression - interval_expression = TIMESTAMP
datetime_expression + interval_expression = DATETIME
datetime_expression - interval_expression = DATETIME

Description

Adds an interval to a datetime value or subtracts an interval from a datetime value. Example

SELECT
  DATE "2021-04-20" + INTERVAL 25 HOUR AS date_plus,
  TIMESTAMP "2021-05-02 00:01:02.345" - INTERVAL 10 SECOND AS time_minus;

+-------------------------+--------------------------------+
| date_plus               | time_minus                     |
+-------------------------+--------------------------------+
| 2021-04-21 01:00:00     | 2021-05-02 00:00:52.345+00     |
+-------------------------+--------------------------------+

Multiplication and division

interval_expression * integer_expression = INTERVAL
interval_expression / integer_expression = INTERVAL

Description

Multiplies or divides an interval value by an integer.

Example

SELECT
  INTERVAL '1:2:3' HOUR TO SECOND * 10 AS mul1,
  INTERVAL 35 SECOND * 4 AS mul2,
  INTERVAL 10 YEAR / 3 AS div1,
  INTERVAL 1 MONTH / 12 AS div2

+----------------+--------------+-------------+--------------+
| mul1           | mul2         | div1        | div2         |
+----------------+--------------+-------------+--------------+
| 0-0 0 10:20:30 | 0-0 0 0:2:20 | 3-4 0 0:0:0 | 0-0 2 12:0:0 |
+----------------+--------------+-------------+--------------+

Bitwise operators

All bitwise operators return the same type and the same length as the first operand.

NameSyntaxInput Data TypeDescription
Bitwise not ~ X Integer or BYTES Performs logical negation on each bit, forming the ones' complement of the given binary value.
Bitwise or X | Y X: Integer or BYTES
Y: Same type as X
Takes two bit patterns of equal length and performs the logical inclusive OR operation on each pair of the corresponding bits. This operator throws an error if X and Y are BYTES of different lengths.
Bitwise xor X ^ Y X: Integer or BYTES
Y: Same type as X
Takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of the corresponding bits. This operator throws an error if X and Y are BYTES of different lengths.
Bitwise and X & Y X: Integer or BYTES
Y: Same type as X
Takes two bit patterns of equal length and performs the logical AND operation on each pair of the corresponding bits. This operator throws an error if X and Y are BYTES of different lengths.
Left shift X << Y X: Integer or BYTES
Y: INT64
Shifts the first operand X to the left. This operator returns 0 or a byte sequence of b'\x00' if the second operand Y is greater than or equal to the bit length of the first operand X (for example, 64 if X has the type INT64). This operator throws an error if Y is negative.
Right shift X >> Y X: Integer or BYTES
Y: INT64
Shifts the first operand X to the right. This operator does not do sign bit extension with a signed type (i.e. it fills vacant bits on the left with 0). This operator returns 0 or a byte sequence of b'\x00' if the second operand Y is greater than or equal to the bit length of the first operand X (for example, 64 if X has the type INT64). This operator throws an error if Y is negative.

Logical operators

BigQuery supports the AND, OR, and NOT logical operators. Logical operators allow only BOOL or NULL input and use three-valued logic to produce a result. The result can be TRUE, FALSE, or NULL:

xyx AND yx OR y
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL TRUE NULL TRUE
NULL FALSE FALSE NULL
NULL NULL NULL NULL
xNOT x
TRUE FALSE
FALSE TRUE
NULL NULL

Examples

The examples in this section reference a table called entry_table:

+-------+
| entry |
+-------+
| a     |
| b     |
| c     |
| NULL  |
+-------+
SELECT 'a' FROM entry_table WHERE entry = 'a'

-- a => 'a' = 'a' => TRUE
-- b => 'b' = 'a' => FALSE
-- NULL => NULL = 'a' => NULL

+-------+
| entry |
+-------+
| a     |
+-------+
SELECT entry FROM entry_table WHERE NOT (entry = 'a')

-- a => NOT('a' = 'a') => NOT(TRUE) => FALSE
-- b => NOT('b' = 'a') => NOT(FALSE) => TRUE
-- NULL => NOT(NULL = 'a') => NOT(NULL) => NULL

+-------+
| entry |
+-------+
| b     |
| c     |
+-------+
SELECT entry FROM entry_table WHERE entry IS NULL

-- a => 'a' IS NULL => FALSE
-- b => 'b' IS NULL => FALSE
-- NULL => NULL IS NULL => TRUE

+-------+
| entry |
+-------+
| NULL  |
+-------+

Comparison operators

Comparisons always return BOOL. Comparisons generally require both operands to be of the same type. If operands are of different types, and if BigQuery can convert the values of those types to a common type without loss of precision, BigQuery will generally coerce them to that common type for the comparison; BigQuery will generally coerce literals to the type of non-literals, where present. Comparable data types are defined in Data Types.

STRUCTs support only 4 comparison operators: equal (=), not equal (!= and <>), and IN.

The following rules apply when comparing these data types:

  • FLOAT64: All comparisons with NaN return FALSE, except for != and <>, which return TRUE.
  • BOOL: FALSE is less than TRUE.
  • STRING: Strings are compared codepoint-by-codepoint, which means that canonically equivalent strings are only guaranteed to compare as equal if they have been normalized first.
  • NULL: The convention holds here: any operation with a NULL input returns NULL.
NameSyntaxDescription
Less Than X < Y Returns TRUE if X is less than Y. This operator supports specifying collation.
Less Than or Equal To X <= Y Returns TRUE if X is less than or equal to Y. This operator supports specifying collation.
Greater Than X > Y Returns TRUE if X is greater than Y. This operator supports specifying collation.
Greater Than or Equal To X >= Y Returns TRUE if X is greater than or equal to Y. This operator supports specifying collation.
Equal X = Y Returns TRUE if X is equal to Y. This operator supports specifying collation.
Not Equal X != Y
X <> Y
Returns TRUE if X is not equal to Y. This operator supports specifying collation.
BETWEEN X [NOT] BETWEEN Y AND Z

Returns TRUE if X is [not] within the range specified. The result of "X BETWEEN Y AND Z" is equivalent to "Y <= X AND X <= Z" but X is evaluated only once in the former. This operator supports specifying collation.

LIKE X [NOT] LIKE Y Checks if the STRING in the first operand X matches a pattern specified by the second operand Y. Expressions can contain these characters:
  • A percent sign "%" matches any number of characters or bytes
  • An underscore "_" matches a single character or byte
  • You can escape "\", "_", or "%" using two backslashes. For example, "\\%". If you are using raw strings, only a single backslash is required. For example, r"\%".
IN Multiple - see below Returns FALSE if the right operand is empty. Returns NULL if the left operand is NULL. Returns TRUE or NULL, never FALSE, if the right operand contains NULL. Arguments on either side of IN are general expressions. Neither operand is required to be a literal, although using a literal on the right is most common. X is evaluated only once. This operator generally supports specifying collation.

When testing values that have a STRUCT data type for equality, it's possible that one or more fields are NULL. In such cases:

  • If all non-NULL field values are equal, the comparison returns NULL.
  • If any non-NULL field values are not equal, the comparison returns false.

The following table demonstrates how STRUCT data types are compared when they have fields that are NULL valued.

Struct1Struct2Struct1 = Struct2
STRUCT(1, NULL) STRUCT(1, NULL) NULL
STRUCT(1, NULL) STRUCT(2, NULL) FALSE
STRUCT(1,2) STRUCT(1, NULL) NULL

EXISTS operator

EXISTS ( subquery )

Description

Returns TRUE if the subquery produces one or more rows. Returns FALSE if the subquery produces zero rows. Never returns NULL. To learn more about how you can use a subquery with EXISTS, see EXISTS subqueries.

Examples

In this example, the EXISTS operator returns FALSE because there are no rows in Words where the direction is south:

WITH Words AS (
  SELECT 'Intend' as value, 'east' as direction UNION ALL
  SELECT 'Secure', 'north' UNION ALL
  SELECT 'Clarity', 'west'
 )
SELECT EXISTS ( SELECT value FROM Words WHERE direction = 'south' ) as result;

+--------+
| result |
+--------+
| FALSE  |
+--------+

IN operator

The IN operator supports the following syntax:

search_value [NOT] IN value_set

value_set:
  {
    (expression[, ...])
    | (subquery)
    | UNNEST(array_expression)
  }

Description

Checks for an equal value in a set of values. Semantic rules apply, but in general, IN returns TRUE if an equal value is found, FALSE if an equal value is excluded, otherwise NULL. NOT IN returns FALSE if an equal value is found, TRUE if an equal value is excluded, otherwise NULL.

  • search_value: The expression that is compared to a set of values.
  • value_set: One or more values to compare to a search value.

    • (expression[, ...]): A list of expressions.
    • (subquery): A subquery that returns a single column. The values in that column are the set of values. If no rows are produced, the set of values is empty.
    • UNNEST(array_expression): An UNNEST operator that returns a column of values from an array expression. This is equivalent to:

      IN (SELECT element FROM UNNEST(array_expression) AS element)
      

Semantic rules

When using the IN operator, the following semantics apply in this order:

  • Returns FALSE if value_set is empty.
  • Returns NULL if search_value is NULL.
  • Returns TRUE if value_set contains a value equal to search_value.
  • Returns NULL if value_set contains a NULL.
  • Returns FALSE.

When using the NOT IN operator, the following semantics apply in this order:

  • Returns TRUE if value_set is empty.
  • Returns NULL if search_value is NULL.
  • Returns FALSE if value_set contains a value equal to search_value.
  • Returns NULL if value_set contains a NULL.
  • Returns TRUE.

This operator generally supports collation, however, x [NOT] IN UNNEST is not supported.

The semantics of:

x IN (y, z, ...)

are defined as equivalent to:

(x = y) OR (x = z) OR ...

and the subquery and array forms are defined similarly.

x NOT IN ...

is equivalent to:

NOT(x IN ...)

The UNNEST form treats an array scan like UNNEST in the FROM clause:

x [NOT] IN UNNEST(<array expression>)

This form is often used with ARRAY parameters. For example:

x IN UNNEST(@array_parameter)

See the Arrays topic for more information on how to use this syntax.

IN can be used with multi-part keys by using the struct constructor syntax. For example:

(Key1, Key2) IN ( (12,34), (56,78) )
(Key1, Key2) IN ( SELECT (table.a, table.b) FROM table )

See the Struct Type for more information.

Return Data Type

BOOL

Examples

You can use these WITH clauses to emulate temporary tables for Words and Items in the following examples:

WITH Words AS (
  SELECT 'Intend' as value UNION ALL
  SELECT 'Secure' UNION ALL
  SELECT 'Clarity' UNION ALL
  SELECT 'Peace' UNION ALL
  SELECT 'Intend'
 )
SELECT * FROM Words;

+----------+
| value    |
+----------+
| Intend   |
| Secure   |
| Clarity  |
| Peace    |
| Intend   |
+----------+
WITH
  Items AS (
    SELECT STRUCT('blue' AS color, 'round' AS shape) AS info UNION ALL
    SELECT STRUCT('blue', 'square') UNION ALL
    SELECT STRUCT('red', 'round')
  )
SELECT * FROM Items;

+----------------------------+
| info                       |
+----------------------------+
| {blue color, round shape}  |
| {blue color, square shape} |
| {red color, round shape}   |
+----------------------------+

Example with IN and an expression:

SELECT * FROM Words WHERE value IN ('Intend', 'Secure');

+----------+
| value    |
+----------+
| Intend   |
| Secure   |
| Intend   |
+----------+

Example with NOT IN and an expression:

SELECT * FROM Words WHERE value NOT IN ('Intend');

+----------+
| value    |
+----------+
| Secure   |
| Clarity  |
| Peace    |
+----------+

Example with IN, a scalar subquery, and an expression:

SELECT * FROM Words WHERE value IN ((SELECT 'Intend'), 'Clarity');

+----------+
| value    |
+----------+
| Intend   |
| Clarity  |
| Intend   |
+----------+

Example with IN and an UNNEST operation:

SELECT * FROM Words WHERE value IN UNNEST(['Secure', 'Clarity']);

+----------+
| value    |
+----------+
| Secure   |
| Clarity  |
+----------+

Example with IN and a STRUCT:

SELECT
  (SELECT AS STRUCT Items.info) as item
FROM
  Items
WHERE (info.shape, info.color) IN (('round', 'blue'));

+------------------------------------+
| item                               |
+------------------------------------+
| { {blue color, round shape} info } |
+------------------------------------+

IS operators

IS operators return TRUE or FALSE for the condition they are testing. They never return NULL, even for NULL inputs, unlike the IS_INF and IS_NAN functions defined in Mathematical Functions. If NOT is present, the output BOOL value is inverted.

Function SyntaxInput Data TypeResult Data TypeDescription
X IS TRUE
BOOL BOOL Evaluates to TRUE if X evaluates to TRUE. Otherwise, evaluates to FALSE.
X IS NOT TRUE
BOOL BOOL Evaluates to FALSE if X evaluates to TRUE. Otherwise, evaluates to TRUE.
X IS FALSE
BOOL BOOL Evaluates to TRUE if X evaluates to FALSE. Otherwise, evaluates to FALSE.
X IS NOT FALSE
BOOL BOOL Evaluates to FALSE if X evaluates to FALSE. Otherwise, evaluates to TRUE.
X IS NULL
Any value type BOOL Evaluates to TRUE if X evaluates to NULL. Otherwise evaluates to FALSE.
X IS NOT NULL
Any value type BOOL Evaluates to FALSE if X evaluates to NULL. Otherwise evaluates to TRUE.
X IS UNKNOWN
BOOL BOOL Evaluates to TRUE if X evaluates to NULL. Otherwise evaluates to FALSE.
X IS NOT UNKNOWN
BOOL BOOL Evaluates to FALSE if X evaluates to NULL. Otherwise, evaluates to TRUE.

IS DISTINCT FROM operator

expression_1 IS [NOT] DISTINCT FROM expression_2

Description

IS DISTINCT FROM returns TRUE if the input values are considered to be distinct from each other by the DISTINCT and GROUP BY clauses. Otherwise, returns FALSE.

a IS DISTINCT FROM b being TRUE is equivalent to:

  • SELECT COUNT(DISTINCT x) FROM UNNEST([a,b]) x returning 2.
  • SELECT * FROM UNNEST([a,b]) x GROUP BY x returning 2 rows.

a IS DISTINCT FROM b is equivalent to NOT (a = b), except for the following cases:

  • This operator never returns NULL so NULL values are considered to be distinct from non-NULL values, not other NULL values.
  • NaN values are considered to be distinct from non-NaN values, but not other NaN values.

You can use this operation with fields in a complex data type, but not on the complex data types themselves. These complex data types cannot be compared directly:

  • STRUCT
  • ARRAY

Input types

  • expression_1: The first value to compare. This can be a groupable data type, NULL or NaN.
  • expression_2: The second value to compare. This can be a groupable data type, NULL or NaN.
  • NOT: If present, the output BOOL value is inverted.

Return type

BOOL

Examples

These return TRUE:

SELECT 1 IS DISTINCT FROM 2
SELECT 1 IS DISTINCT FROM NULL
SELECT 1 IS NOT DISTINCT FROM 1
SELECT NULL IS NOT DISTINCT FROM NULL

These return FALSE:

SELECT NULL IS DISTINCT FROM NULL
SELECT 1 IS DISTINCT FROM 1
SELECT 1 IS NOT DISTINCT FROM 2
SELECT 1 IS NOT DISTINCT FROM NULL

Concatenation operator

The concatenation operator combines multiple values into one.

Function SyntaxInput Data TypeResult Data Type
STRING || STRING [ || ... ]
STRING STRING
BYTES || BYTES [ || ... ]
BYTES STRING
ARRAY<T> || ARRAY<T> [ || ... ]
ARRAY<T> ARRAY<T>

Conditional expressions

Conditional expressions impose constraints on the evaluation order of their inputs. In essence, they are evaluated left to right, with short-circuiting, and only evaluate the output value that was chosen. In contrast, all inputs to regular functions are evaluated before calling the function. Short-circuiting in conditional expressions can be exploited for error handling or performance tuning.

CASE expr

CASE expr
  WHEN expr_to_match THEN result
  [ ... ]
  [ ELSE else_result ]
  END

Description

Compares expr to expr_to_match of each successive WHEN clause and returns the first result where this comparison returns true. The remaining WHEN clauses and else_result are not evaluated. If the expr = expr_to_match comparison returns false or NULL for all WHEN clauses, returns else_result if present; if not present, returns NULL.

expr and expr_to_match can be any type. They must be implicitly coercible to a common supertype; equality comparisons are done on coerced values. There may be multiple result types. result and else_result expressions must be coercible to a common supertype.

This expression supports specifying collation.

Return Data Type

Supertype of result[, ...] and else_result.

Example

WITH Numbers AS (
  SELECT 90 as A, 2 as B UNION ALL
  SELECT 50, 8 UNION ALL
  SELECT 60, 6 UNION ALL
  SELECT 50, 10
)
SELECT
  A,
  B,
  CASE A
    WHEN 90 THEN 'red'
    WHEN 50 THEN 'blue'
    ELSE 'green'
    END
    AS result
FROM Numbers

+------------------+
| A  | B  | result |
+------------------+
| 90 | 2  | red    |
| 50 | 8  | blue   |
| 60 | 6  | green  |
| 50 | 10 | blue   |
+------------------+

CASE

CASE
  WHEN condition THEN result
  [ ... ]
  [ ELSE else_result ]
  END

Description

Evaluates the condition of each successive WHEN clause and returns the first result where the condition is true; any remaining WHEN clauses and else_result are not evaluated. If all conditions are false or NULL, returns else_result if present; if not present, returns NULL.

condition must be a boolean expression. There may be multiple result types. result and else_result expressions must be implicitly coercible to a common supertype.

This expression supports specifying collation.

Return Data Type

Supertype of result[, ...] and else_result.

Example

WITH Numbers AS (
  SELECT 90 as A, 2 as B UNION ALL
  SELECT 50, 6 UNION ALL
  SELECT 20, 10
)
SELECT
  A,
  B,
  CASE
    WHEN A > 60 THEN 'red'
    WHEN A > 30 THEN 'blue'
    ELSE 'green'
    END
    AS result
FROM Numbers

+------------------+
| A  | B  | result |
+------------------+
| 90 | 2  | red    |
| 50 | 6  | blue   |
| 20 | 10 | green  |
+------------------+

COALESCE

COALESCE(expr[, ...])

Description

Returns the value of the first non-null expression. The remaining expressions are not evaluated. An input expression can be any type. There may be multiple input expression types. All input expressions must be implicitly coercible to a common supertype.

Return Data Type

Supertype of expr[, ...].

Examples

SELECT COALESCE('A', 'B', 'C') as result

+--------+
| result |
+--------+
| A      |
+--------+
SELECT COALESCE(NULL, 'B', 'C') as result

+--------+
| result |
+--------+
| B      |
+--------+

IF

IF(expr, true_result, else_result)

Description

If expr is true, returns true_result, else returns else_result. else_result is not evaluated if expr is true. true_result is not evaluated if expr is false or NULL.

expr must be a boolean expression. true_result and else_result must be coercible to a common supertype.

Return Data Type

Supertype of true_result and else_result.

Example

WITH Numbers AS (
  SELECT 10 as A, 20 as B UNION ALL
  SELECT 50, 30 UNION ALL
  SELECT 60, 60
)
SELECT
  A,
  B,
  IF(A < B, 'true', 'false') AS result
FROM Numbers

+------------------+
| A  | B  | result |
+------------------+
| 10 | 20 | true   |
| 50 | 30 | false  |
| 60 | 60 | false  |
+------------------+

IFNULL

IFNULL(expr, null_result)

Description

If expr is NULL, return null_result. Otherwise, return expr. If expr is not NULL, null_result is not evaluated.

expr and null_result can be any type and must be implicitly coercible to a common supertype. Synonym for COALESCE(expr, null_result).

Return Data Type

Supertype of expr or null_result.

Examples

SELECT IFNULL(NULL, 0) as result

+--------+
| result |
+--------+
| 0      |
+--------+
SELECT IFNULL(10, 0) as result

+--------+
| result |
+--------+
| 10     |
+--------+

NULLIF

NULLIF(expr, expr_to_match)

Description

Returns NULL if expr = expr_to_match is true, otherwise returns expr.

expr and expr_to_match must be implicitly coercible to a common supertype, and must be comparable.

This expression supports specifying collation.

Return Data Type

Supertype of expr and expr_to_match.

Example

SELECT NULLIF(0, 0) as result

+--------+
| result |
+--------+
| NULL   |
+--------+
SELECT NULLIF(10, 0) as result

+--------+
| result |
+--------+
| 10     |
+--------+

FUNCTIONS

Aggregate functions

The following general aggregate functions are available in Google Standard SQL. To learn about the syntax for aggregate function calls, see Aggregate function calls.

ANY_VALUE

ANY_VALUE(
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns expression for some row chosen from the group. Which row is chosen is nondeterministic, not random. Returns NULL when the input produces no rows. Returns NULL when expression is NULL for all rows in the group.

ANY_VALUE behaves as if RESPECT NULLS is specified; rows for which expression is NULL are considered and may be selected.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

Any

Returned Data Types

Matches the input data type.

Examples

SELECT ANY_VALUE(fruit) as any_value
FROM UNNEST(["apple", "banana", "pear"]) as fruit;

+-----------+
| any_value |
+-----------+
| apple     |
+-----------+
SELECT
  fruit,
  ANY_VALUE(fruit) OVER (ORDER BY LENGTH(fruit) ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS any_value
FROM UNNEST(["apple", "banana", "pear"]) as fruit;

+--------+-----------+
| fruit  | any_value |
+--------+-----------+
| pear   | pear      |
| apple  | pear      |
| banana | apple     |
+--------+-----------+

ARRAY_AGG

ARRAY_AGG(
  [ DISTINCT ]
  expression
  [ { IGNORE | RESPECT } NULLS ]
  [ ORDER BY key [ { ASC | DESC } ] [, ... ] ]
  [ LIMIT n ]
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns an ARRAY of expression values.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

An error is raised if an array in the final query result contains a NULL element.

Supported Argument Types

All data types except ARRAY.

Returned Data Types

ARRAY

If there are zero input rows, this function returns NULL.

Examples

SELECT ARRAY_AGG(x) AS array_agg FROM UNNEST([2, 1,-2, 3, -2, 1, 2]) AS x;

+-------------------------+
| array_agg               |
+-------------------------+
| [2, 1, -2, 3, -2, 1, 2] |
+-------------------------+
SELECT ARRAY_AGG(DISTINCT x) AS array_agg
FROM UNNEST([2, 1, -2, 3, -2, 1, 2]) AS x;

+---------------+
| array_agg     |
+---------------+
| [2, 1, -2, 3] |
+---------------+
SELECT ARRAY_AGG(x IGNORE NULLS) AS array_agg
FROM UNNEST([NULL, 1, -2, 3, -2, 1, NULL]) AS x;

+-------------------+
| array_agg         |
+-------------------+
| [1, -2, 3, -2, 1] |
+-------------------+
SELECT ARRAY_AGG(x ORDER BY ABS(x)) AS array_agg
FROM UNNEST([2, 1, -2, 3, -2, 1, 2]) AS x;

+-------------------------+
| array_agg               |
+-------------------------+
| [1, 1, 2, -2, -2, 2, 3] |
+-------------------------+
SELECT ARRAY_AGG(x LIMIT 5) AS array_agg
FROM UNNEST([2, 1, -2, 3, -2, 1, 2]) AS x;

+-------------------+
| array_agg         |
+-------------------+
| [2, 1, -2, 3, -2] |
+-------------------+
WITH vals AS
  (
    SELECT 1 x UNION ALL
    SELECT -2 x UNION ALL
    SELECT 3 x UNION ALL
    SELECT -2 x UNION ALL
    SELECT 1 x
  )
SELECT ARRAY_AGG(DISTINCT x ORDER BY x) as array_agg
FROM vals;

+------------+
| array_agg  |
+------------+
| [-2, 1, 3] |
+------------+
WITH vals AS
  (
    SELECT 1 x, 'a' y UNION ALL
    SELECT 1 x, 'b' y UNION ALL
    SELECT 2 x, 'a' y UNION ALL
    SELECT 2 x, 'c' y
  )
SELECT x, ARRAY_AGG(y) as array_agg
FROM vals
GROUP BY x;

+---------------+
| x | array_agg |
+---------------+
| 1 | [a, b]    |
| 2 | [a, c]    |
+---------------+
SELECT
  x,
  ARRAY_AGG(x) OVER (ORDER BY ABS(x)) AS array_agg
FROM UNNEST([2, 1, -2, 3, -2, 1, 2]) AS x;

+----+-------------------------+
| x  | array_agg               |
+----+-------------------------+
| 1  | [1, 1]                  |
| 1  | [1, 1]                  |
| 2  | [1, 1, 2, -2, -2, 2]    |
| -2 | [1, 1, 2, -2, -2, 2]    |
| -2 | [1, 1, 2, -2, -2, 2]    |
| 2  | [1, 1, 2, -2, -2, 2]    |
| 3  | [1, 1, 2, -2, -2, 2, 3] |
+----+-------------------------+

ARRAY_CONCAT_AGG

ARRAY_CONCAT_AGG(
  expression
  [ ORDER BY key [ { ASC | DESC } ] [, ... ] ]
  [ LIMIT n ]
)

Description

Concatenates elements from expression of type ARRAY, returning a single array as a result.

This function ignores NULL input arrays, but respects the NULL elements in non-NULL input arrays. An error is raised, however, if an array in the final query result contains a NULL element. Returns NULL if there are zero input rows or expression evaluates to NULL for all rows.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

ARRAY

Returned Data Types

ARRAY

Examples

SELECT FORMAT("%T", ARRAY_CONCAT_AGG(x)) AS array_concat_agg FROM (
  SELECT [NULL, 1, 2, 3, 4] AS x
  UNION ALL SELECT NULL
  UNION ALL SELECT [5, 6]
  UNION ALL SELECT [7, 8, 9]
);

+-----------------------------------+
| array_concat_agg                  |
+-----------------------------------+
| [NULL, 1, 2, 3, 4, 5, 6, 7, 8, 9] |
+-----------------------------------+
SELECT FORMAT("%T", ARRAY_CONCAT_AGG(x ORDER BY ARRAY_LENGTH(x))) AS array_concat_agg FROM (
  SELECT [1, 2, 3, 4] AS x
  UNION ALL SELECT [5, 6]
  UNION ALL SELECT [7, 8, 9]
);

+-----------------------------------+
| array_concat_agg                  |
+-----------------------------------+
| [5, 6, 7, 8, 9, 1, 2, 3, 4]       |
+-----------------------------------+
SELECT FORMAT("%T", ARRAY_CONCAT_AGG(x LIMIT 2)) AS array_concat_agg FROM (
  SELECT [1, 2, 3, 4] AS x
  UNION ALL SELECT [5, 6]
  UNION ALL SELECT [7, 8, 9]
);

+--------------------------+
| array_concat_agg         |
+--------------------------+
| [1, 2, 3, 4, 5, 6]       |
+--------------------------+
SELECT FORMAT("%T", ARRAY_CONCAT_AGG(x ORDER BY ARRAY_LENGTH(x) LIMIT 2)) AS array_concat_agg FROM (
  SELECT [1, 2, 3, 4] AS x
  UNION ALL SELECT [5, 6]
  UNION ALL SELECT [7, 8, 9]
);

+------------------+
| array_concat_agg |
+------------------+
| [5, 6, 7, 8, 9]  |
+------------------+

AVG

AVG(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the average of non-NULL input values, or NaN if the input contains a NaN.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

Any numeric input type, such as INT64. Note that, for floating point input types, the return result is non-deterministic, which means you might receive a different result each time you use this function.

Returned Data Types

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

Examples

SELECT AVG(x) as avg
FROM UNNEST([0, 2, 4, 4, 5]) as x;

+-----+
| avg |
+-----+
| 3   |
+-----+
SELECT AVG(DISTINCT x) AS avg
FROM UNNEST([0, 2, 4, 4, 5]) AS x;

+------+
| avg  |
+------+
| 2.75 |
+------+
SELECT
  x,
  AVG(x) OVER (ORDER BY x ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS avg
FROM UNNEST([0, 2, NULL, 4, 4, 5]) AS x;

+------+------+
| x    | avg  |
+------+------+
| NULL | NULL |
| 0    | 0    |
| 2    | 1    |
| 4    | 3    |
| 4    | 4    |
| 5    | 4.5  |
+------+------+

BIT_AND

BIT_AND(
  expression
)

Description

Performs a bitwise AND operation on expression and returns the result.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

  • INT64

Returned Data Types

INT64

Examples

SELECT BIT_AND(x) as bit_and FROM UNNEST([0xF001, 0x00A1]) as x;

+---------+
| bit_and |
+---------+
| 1       |
+---------+

BIT_OR

BIT_OR(
  expression
)

Description

Performs a bitwise OR operation on expression and returns the result.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

  • INT64

Returned Data Types

INT64

Examples

SELECT BIT_OR(x) as bit_or FROM UNNEST([0xF001, 0x00A1]) as x;

+--------+
| bit_or |
+--------+
| 61601  |
+--------+

BIT_XOR

BIT_XOR(
  [ DISTINCT ]
  expression
)

Description

Performs a bitwise XOR operation on expression and returns the result.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

  • INT64

Returned Data Types

INT64

Examples

SELECT BIT_XOR(x) AS bit_xor FROM UNNEST([5678, 1234]) AS x;

+---------+
| bit_xor |
+---------+
| 4860    |
+---------+
SELECT BIT_XOR(x) AS bit_xor FROM UNNEST([1234, 5678, 1234]) AS x;

+---------+
| bit_xor |
+---------+
| 5678    |
+---------+
SELECT BIT_XOR(DISTINCT x) AS bit_xor FROM UNNEST([1234, 5678, 1234]) AS x;

+---------+
| bit_xor |
+---------+
| 4860    |
+---------+

COUNT

1.

COUNT(*)
[OVER over_clause]

2.

COUNT(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

  1. Returns the number of rows in the input.
  2. Returns the number of rows with expression evaluated to any value other than NULL.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

This function with DISTINCT supports specifying collation.

Supported Argument Types

expression can be any data type. If DISTINCT is present, expression can only be a data type that is groupable.

Return Data Types

INT64

Examples

You can use the COUNT function to return the number of rows in a table or the number of distinct values of an expression. For example:

SELECT
  COUNT(*) AS count_star,
  COUNT(DISTINCT x) AS count_dist_x
FROM UNNEST([1, 4, 4, 5]) AS x;

+------------+--------------+
| count_star | count_dist_x |
+------------+--------------+
| 4          | 3            |
+------------+--------------+
SELECT
  x,
  COUNT(*) OVER (PARTITION BY MOD(x, 3)) AS count_star,
  COUNT(DISTINCT x) OVER (PARTITION BY MOD(x, 3)) AS count_dist_x
FROM UNNEST([1, 4, 4, 5]) AS x;

+------+------------+--------------+
| x    | count_star | count_dist_x |
+------+------------+--------------+
| 1    | 3          | 2            |
| 4    | 3          | 2            |
| 4    | 3          | 2            |
| 5    | 1          | 1            |
+------+------------+--------------+
SELECT
  x,
  COUNT(*) OVER (PARTITION BY MOD(x, 3)) AS count_star,
  COUNT(x) OVER (PARTITION BY MOD(x, 3)) AS count_x
FROM UNNEST([1, 4, NULL, 4, 5]) AS x;

+------+------------+---------+
| x    | count_star | count_x |
+------+------------+---------+
| NULL | 1          | 0       |
| 1    | 3          | 3       |
| 4    | 3          | 3       |
| 4    | 3          | 3       |
| 5    | 1          | 1       |
+------+------------+---------+

If you want to count the number of distinct values of an expression for which a certain condition is satisfied, this is one recipe that you can use:

COUNT(DISTINCT IF(condition, expression, NULL))

Here, IF will return the value of expression if condition is TRUE, or NULL otherwise. The surrounding COUNT(DISTINCT ...) will ignore the NULL values, so it will count only the distinct values of expression for which condition is TRUE.

For example, to count the number of distinct positive values of x:

SELECT COUNT(DISTINCT IF(x > 0, x, NULL)) AS distinct_positive
FROM UNNEST([1, -2, 4, 1, -5, 4, 1, 3, -6, 1]) AS x;

+-------------------+
| distinct_positive |
+-------------------+
| 3                 |
+-------------------+

Or to count the number of distinct dates on which a certain kind of event occurred:

WITH Events AS (
  SELECT DATE '2021-01-01' AS event_date, 'SUCCESS' AS event_type
  UNION ALL
  SELECT DATE '2021-01-02' AS event_date, 'SUCCESS' AS event_type
  UNION ALL
  SELECT DATE '2021-01-02' AS event_date, 'FAILURE' AS event_type
  UNION ALL
  SELECT DATE '2021-01-03' AS event_date, 'SUCCESS' AS event_type
  UNION ALL
  SELECT DATE '2021-01-04' AS event_date, 'FAILURE' AS event_type
  UNION ALL
  SELECT DATE '2021-01-04' AS event_date, 'FAILURE' AS event_type
)
SELECT
  COUNT(DISTINCT IF(event_type = 'FAILURE', event_date, NULL))
    AS distinct_dates_with_failures
FROM Events;

+------------------------------+
| distinct_dates_with_failures |
+------------------------------+
| 2                            |
+------------------------------+

COUNTIF

COUNTIF(
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the count of TRUE values for expression. Returns 0 if there are zero input rows, or if expression evaluates to FALSE or NULL for all rows.

Since expression must be a BOOL, the form COUNTIF(DISTINCT ...) is not supported. This would not be useful: there is only one distinct value of TRUE. Usually when someone wants to combine COUNTIF and DISTINCT, they want to count the number of distinct values of an expression for which a certain condition is satisfied. One recipe to achieve this is the following:

COUNT(DISTINCT IF(condition, expression, NULL))

Note that this uses COUNT, not COUNTIF; the IF part has been moved inside. To learn more, see the examples for COUNT.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

BOOL

Return Data Types

INT64

Examples

SELECT COUNTIF(x<0) AS num_negative, COUNTIF(x>0) AS num_positive
FROM UNNEST([5, -2, 3, 6, -10, -7, 4, 0]) AS x;

+--------------+--------------+
| num_negative | num_positive |
+--------------+--------------+
| 3            | 4            |
+--------------+--------------+
SELECT
  x,
  COUNTIF(x<0) OVER (ORDER BY ABS(x) ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS num_negative
FROM UNNEST([5, -2, 3, 6, -10, NULL, -7, 4, 0]) AS x;

+------+--------------+
| x    | num_negative |
+------+--------------+
| NULL | 0            |
| 0    | 1            |
| -2   | 1            |
| 3    | 1            |
| 4    | 0            |
| 5    | 0            |
| 6    | 1            |
| -7   | 2            |
| -10  | 2            |
+------+--------------+

LOGICAL_AND

LOGICAL_AND(
  expression
)

Description

Returns the logical AND of all non-NULL expressions. Returns NULL if there are zero input rows or expression evaluates to NULL for all rows.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

BOOL

Return Data Types

BOOL

Examples

SELECT LOGICAL_AND(x) AS logical_and FROM UNNEST([true, false, true]) AS x;

+-------------+
| logical_and |
+-------------+
| false       |
+-------------+

LOGICAL_OR

LOGICAL_OR(
  expression
)

Description

Returns the logical OR of all non-NULL expressions. Returns NULL if there are zero input rows or expression evaluates to NULL for all rows.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

BOOL

Return Data Types

BOOL

Examples

SELECT LOGICAL_OR(x) AS logical_or FROM UNNEST([true, false, true]) AS x;

+------------+
| logical_or |
+------------+
| true       |
+------------+

MAX

MAX(
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the maximum value of non-NULL expressions. Returns NULL if there are zero input rows or expression evaluates to NULL for all rows. Returns NaN if the input contains a NaN.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

This function supports specifying collation.

Supported Argument Types

Any orderable data type.

Return Data Types

Same as the data type used as the input values.

Examples

SELECT MAX(x) AS max
FROM UNNEST([8, 37, 4, 55]) AS x;

+-----+
| max |
+-----+
| 55  |
+-----+
SELECT x, MAX(x) OVER (PARTITION BY MOD(x, 2)) AS max
FROM UNNEST([8, NULL, 37, 4, NULL, 55]) AS x;

+------+------+
| x    | max  |
+------+------+
| NULL | NULL |
| NULL | NULL |
| 8    | 8    |
| 4    | 8    |
| 37   | 55   |
| 55   | 55   |
+------+------+

MIN

MIN(
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the minimum value of non-NULL expressions. Returns NULL if there are zero input rows or expression evaluates to NULL for all rows. Returns NaN if the input contains a NaN.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

This function supports specifying collation.

Supported Argument Types

Any orderable data type.

Return Data Types

Same as the data type used as the input values.

Examples

SELECT MIN(x) AS min
FROM UNNEST([8, 37, 4, 55]) AS x;

+-----+
| min |
+-----+
| 4   |
+-----+
SELECT x, MIN(x) OVER (PARTITION BY MOD(x, 2)) AS min
FROM UNNEST([8, NULL, 37, 4, NULL, 55]) AS x;

+------+------+
| x    | min  |
+------+------+
| NULL | NULL |
| NULL | NULL |
| 8    | 4    |
| 4    | 4    |
| 37   | 37   |
| 55   | 37   |
+------+------+

STRING_AGG

STRING_AGG(
  [ DISTINCT ]
  expression [, delimiter]
  [ ORDER BY key [ { ASC | DESC } ] [, ... ] ]
  [ LIMIT n ]
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns a value (either STRING or BYTES) obtained by concatenating non-NULL values. Returns NULL if there are zero input rows or expression evaluates to NULL for all rows.

If a delimiter is specified, concatenated values are separated by that delimiter; otherwise, a comma is used as a delimiter.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

Either STRING or BYTES.

Return Data Types

Either STRING or BYTES.

Examples

SELECT STRING_AGG(fruit) AS string_agg
FROM UNNEST(["apple", NULL, "pear", "banana", "pear"]) AS fruit;

+------------------------+
| string_agg             |
+------------------------+
| apple,pear,banana,pear |
+------------------------+
SELECT STRING_AGG(fruit, " & ") AS string_agg
FROM UNNEST(["apple", "pear", "banana", "pear"]) AS fruit;

+------------------------------+
| string_agg                   |
+------------------------------+
| apple & pear & banana & pear |
+------------------------------+
SELECT STRING_AGG(DISTINCT fruit, " & ") AS string_agg
FROM UNNEST(["apple", "pear", "banana", "pear"]) AS fruit;

+-----------------------+
| string_agg            |
+-----------------------+
| apple & pear & banana |
+-----------------------+
SELECT STRING_AGG(fruit, " & " ORDER BY LENGTH(fruit)) AS string_agg
FROM UNNEST(["apple", "pear", "banana", "pear"]) AS fruit;

+------------------------------+
| string_agg                   |
+------------------------------+
| pear & pear & apple & banana |
+------------------------------+
SELECT STRING_AGG(fruit, " & " LIMIT 2) AS string_agg
FROM UNNEST(["apple", "pear", "banana", "pear"]) AS fruit;

+--------------+
| string_agg   |
+--------------+
| apple & pear |
+--------------+
SELECT STRING_AGG(DISTINCT fruit, " & " ORDER BY fruit DESC LIMIT 2) AS string_agg
FROM UNNEST(["apple", "pear", "banana", "pear"]) AS fruit;

+---------------+
| string_agg    |
+---------------+
| pear & banana |
+---------------+
SELECT
  fruit,
  STRING_AGG(fruit, " & ") OVER (ORDER BY LENGTH(fruit)) AS string_agg
FROM UNNEST(["apple", NULL, "pear", "banana", "pear"]) AS fruit;

+--------+------------------------------+
| fruit  | string_agg                   |
+--------+------------------------------+
| NULL   | NULL                         |
| pear   | pear & pear                  |
| pear   | pear & pear                  |
| apple  | pear & pear & apple          |
| banana | pear & pear & apple & banana |
+--------+------------------------------+

SUM

SUM(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the sum of non-null values.

If the expression is a floating point value, the sum is non-deterministic, which means you might receive a different result each time you use this function.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

Any supported numeric data types and INTERVAL.

Return Data Types

INPUTINT64NUMERICBIGNUMERICFLOAT64INTERVAL
OUTPUTINT64 NUMERIC BIGNUMERIC FLOAT64 INTERVAL

Special cases:

Returns NULL if the input contains only NULLs.

Returns NULL if the input contains no rows.

Returns Inf if the input contains Inf.

Returns -Inf if the input contains -Inf.

Returns NaN if the input contains a NaN.

Returns NaN if the input contains a combination of Inf and -Inf.

Examples

SELECT SUM(x) AS sum
FROM UNNEST([1, 2, 3, 4, 5, 4, 3, 2, 1]) AS x;

+-----+
| sum |
+-----+
| 25  |
+-----+
SELECT SUM(DISTINCT x) AS sum
FROM UNNEST([1, 2, 3, 4, 5, 4, 3, 2, 1]) AS x;

+-----+
| sum |
+-----+
| 15  |
+-----+
SELECT
  x,
  SUM(x) OVER (PARTITION BY MOD(x, 3)) AS sum
FROM UNNEST([1, 2, 3, 4, 5, 4, 3, 2, 1]) AS x;

+---+-----+
| x | sum |
+---+-----+
| 3 | 6   |
| 3 | 6   |
| 1 | 10  |
| 4 | 10  |
| 4 | 10  |
| 1 | 10  |
| 2 | 9   |
| 5 | 9   |
| 2 | 9   |
+---+-----+
SELECT
  x,
  SUM(DISTINCT x) OVER (PARTITION BY MOD(x, 3)) AS sum
FROM UNNEST([1, 2, 3, 4, 5, 4, 3, 2, 1]) AS x;

+---+-----+
| x | sum |
+---+-----+
| 3 | 3   |
| 3 | 3   |
| 1 | 5   |
| 4 | 5   |
| 4 | 5   |
| 1 | 5   |
| 2 | 7   |
| 5 | 7   |
| 2 | 7   |
+---+-----+
SELECT SUM(x) AS sum
FROM UNNEST([]) AS x;

+------+
| sum  |
+------+
| NULL |
+------+

Statistical aggregate functions

The following statistical aggregate functions are available in Google Standard SQL. To learn about the syntax for aggregate function calls, see Aggregate function calls.

CORR

CORR(
  X1, X2
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the Pearson coefficient of correlation of a set of number pairs. For each number pair, the first number is the dependent variable and the second number is the independent variable. The return result is between -1 and 1. A result of 0 indicates no correlation.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any input pairs that contain one or more NULL values. If there are fewer than two input pairs without NULL values, this function returns NULL.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

COVAR_POP

COVAR_POP(
  X1, X2
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the population covariance of a set of number pairs. The first number is the dependent variable; the second number is the independent variable. The return result is between -Inf and +Inf.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any input pairs that contain one or more NULL values. If there is no input pair without NULL values, this function returns NULL. If there is exactly one input pair without NULL values, this function returns 0.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

COVAR_SAMP

COVAR_SAMP(
  X1, X2
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the sample covariance of a set of number pairs. The first number is the dependent variable; the second number is the independent variable. The return result is between -Inf and +Inf.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any input pairs that contain one or more NULL values. If there are fewer than two input pairs without NULL values, this function returns NULL.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

STDDEV_POP

STDDEV_POP(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the population (biased) standard deviation of the values. The return result is between 0 and +Inf.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any NULL inputs. If all inputs are ignored, this function returns NULL.

If this function receives a single non-NULL input, it returns 0.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

STDDEV_SAMP

STDDEV_SAMP(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the sample (unbiased) standard deviation of the values. The return result is between 0 and +Inf.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any NULL inputs. If there are fewer than two non-NULL inputs, this function returns NULL.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

STDDEV

STDDEV(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

An alias of STDDEV_SAMP.

VAR_POP

VAR_POP(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the population (biased) variance of the values. The return result is between 0 and +Inf.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any NULL inputs. If all inputs are ignored, this function returns NULL.

If this function receives a single non-NULL input, it returns 0.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

VAR_SAMP

VAR_SAMP(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

Returns the sample (unbiased) variance of the values. The return result is between 0 and +Inf.

All numeric types are supported. If the input is NUMERIC or BIGNUMERIC then the internal aggregation is stable with the final output converted to a FLOAT64. Otherwise the input is converted to a FLOAT64 before aggregation, resulting in a potentially unstable result.

This function ignores any NULL inputs. If there are fewer than two non-NULL inputs, this function returns NULL.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Data Type

FLOAT64

VARIANCE

VARIANCE(
  [ DISTINCT ]
  expression
)
[ OVER over_clause ]

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]
  [ window_frame_clause ]

Description

An alias of VAR_SAMP.

Approximate aggregate functions

The following approximate aggregate functions are available in Google Standard SQL. To learn about the syntax for aggregate function calls, see Aggregate function calls.

Approximate aggregate functions are scalable in terms of memory usage and time, but produce approximate results instead of exact results. These functions typically require less memory than exact aggregation functions like COUNT(DISTINCT ...), but also introduce statistical uncertainty. This makes approximate aggregation appropriate for large data streams for which linear memory usage is impractical, as well as for data that is already approximate.

The approximate aggregate functions in this section work directly on the input data, rather than an intermediate estimation of the data. These functions do not allow users to specify the precision for the estimation with sketches. If you would like specify precision with sketches, see:

  • HyperLogLog++ functions to estimate cardinality.

APPROX_COUNT_DISTINCT

APPROX_COUNT_DISTINCT(
  expression
)

Description

Returns the approximate result for COUNT(DISTINCT expression). The value returned is a statistical estimate—not necessarily the actual value.

This function is less accurate than COUNT(DISTINCT expression), but performs better on huge input.

Supported Argument Types

Any data type except: ARRAY STRUCT

Returned Data Types

INT64

Examples

SELECT APPROX_COUNT_DISTINCT(x) as approx_distinct
FROM UNNEST([0, 1, 1, 2, 3, 5]) as x;

+-----------------+
| approx_distinct |
+-----------------+
| 5               |
+-----------------+

APPROX_QUANTILES

APPROX_QUANTILES(
  [ DISTINCT ]
  expression, number
  [ { IGNORE | RESPECT } NULLS ]
)

Description

Returns the approximate boundaries for a group of expression values, where number represents the number of quantiles to create. This function returns an array of number + 1 elements, where the first element is the approximate minimum and the last element is the approximate maximum.

Returns NULL if there are zero input rows or expression evaluates to NULL for all rows.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

  • expression: Any supported data type except:

    • ARRAY
    • STRUCT
  • number: INT64 literal or query parameter.

Returned Data Types

ARRAY<T> where T is the type specified by expression.

Examples

SELECT APPROX_QUANTILES(x, 2) AS approx_quantiles
FROM UNNEST([1, 1, 1, 4, 5, 6, 7, 8, 9, 10]) AS x;

+------------------+
| approx_quantiles |
+------------------+
| [1, 5, 10]       |
+------------------+
SELECT APPROX_QUANTILES(x, 100)[OFFSET(90)] AS percentile_90
FROM UNNEST([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) AS x;

+---------------+
| percentile_90 |
+---------------+
| 9             |
+---------------+
SELECT APPROX_QUANTILES(DISTINCT x, 2) AS approx_quantiles
FROM UNNEST([1, 1, 1, 4, 5, 6, 7, 8, 9, 10]) AS x;

+------------------+
| approx_quantiles |
+------------------+
| [1, 6, 10]       |
+------------------+
SELECT FORMAT("%T", APPROX_QUANTILES(x, 2 RESPECT NULLS)) AS approx_quantiles
FROM UNNEST([NULL, NULL, 1, 1, 1, 4, 5, 6, 7, 8, 9, 10]) AS x;

+------------------+
| approx_quantiles |
+------------------+
| [NULL, 4, 10]    |
+------------------+
SELECT FORMAT("%T", APPROX_QUANTILES(DISTINCT x, 2 RESPECT NULLS)) AS approx_quantiles
FROM UNNEST([NULL, NULL, 1, 1, 1, 4, 5, 6, 7, 8, 9, 10]) AS x;

+------------------+
| approx_quantiles |
+------------------+
| [NULL, 6, 10]    |
+------------------+

APPROX_TOP_COUNT

APPROX_TOP_COUNT(
  expression, number
)

Description

Returns the approximate top elements of expression as an array of STRUCTs. The number parameter specifies the number of elements returned.

Each STRUCT contains two fields. The first field (named value) contains an input value. The second field (named count) contains an INT64 specifying the number of times the value was returned.

Returns NULL if there are zero input rows.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

  • expression: Any data type that the GROUP BY clause supports.
  • number: INT64 literal or query parameter.

Returned Data Types

ARRAY<STRUCT>

Examples

SELECT APPROX_TOP_COUNT(x, 2) as approx_top_count
FROM UNNEST(["apple", "apple", "pear", "pear", "pear", "banana"]) as x;

+-------------------------+
| approx_top_count        |
+-------------------------+
| [{pear, 3}, {apple, 2}] |
+-------------------------+

NULL handling

APPROX_TOP_COUNT does not ignore NULLs in the input. For example:

SELECT APPROX_TOP_COUNT(x, 2) as approx_top_count
FROM UNNEST([NULL, "pear", "pear", "pear", "apple", NULL]) as x;

+------------------------+
| approx_top_count       |
+------------------------+
| [{pear, 3}, {NULL, 2}] |
+------------------------+

APPROX_TOP_SUM

APPROX_TOP_SUM(
  expression, weight, number
)

Description

Returns the approximate top elements of expression, based on the sum of an assigned weight. The number parameter specifies the number of elements returned.

If the weight input is negative or NaN, this function returns an error.

The elements are returned as an array of STRUCTs. Each STRUCT contains two fields: value and sum. The value field contains the value of the input expression. The sum field is the same type as weight, and is the approximate sum of the input weight associated with the value field.

Returns NULL if there are zero input rows.

To learn more about the optional arguments in this function and how to use them, see Aggregate function calls.

Supported Argument Types

  • expression: Any data type that the GROUP BY clause supports.
  • weight: One of the following:

    • INT64
    • NUMERIC
    • BIGNUMERIC
    • FLOAT64
  • number: INT64 literal or query parameter.

Returned Data Types

ARRAY<STRUCT>

Examples

SELECT APPROX_TOP_SUM(x, weight, 2) AS approx_top_sum FROM
UNNEST([
  STRUCT("apple" AS x, 3 AS weight),
  ("pear", 2),
  ("apple", 0),
  ("banana", 5),
  ("pear", 4)
]);

+--------------------------+
| approx_top_sum           |
+--------------------------+
| [{pear, 6}, {banana, 5}] |
+--------------------------+

NULL handling

APPROX_TOP_SUM does not ignore NULL values for the expression and weight parameters.

SELECT APPROX_TOP_SUM(x, weight, 2) AS approx_top_sum FROM
UNNEST([STRUCT("apple" AS x, NULL AS weight), ("pear", 0), ("pear", NULL)]);

+----------------------------+
| approx_top_sum             |
+----------------------------+
| [{pear, 0}, {apple, NULL}] |
+----------------------------+
SELECT APPROX_TOP_SUM(x, weight, 2) AS approx_top_sum FROM
UNNEST([STRUCT("apple" AS x, 0 AS weight), (NULL, 2)]);

+-------------------------+
| approx_top_sum          |
+-------------------------+
| [{NULL, 2}, {apple, 0}] |
+-------------------------+
SELECT APPROX_TOP_SUM(x, weight, 2) AS approx_top_sum FROM
UNNEST([STRUCT("apple" AS x, 0 AS weight), (NULL, NULL)]);

+----------------------------+
| approx_top_sum             |
+----------------------------+
| [{apple, 0}, {NULL, NULL}] |
+----------------------------+

HyperLogLog++ functions

The HyperLogLog++ algorithm (HLL++) estimates cardinality from sketches.

HLL++ functions are approximate aggregate functions. Approximate aggregation typically requires less memory than exact aggregation functions, like COUNT(DISTINCT), but also introduces statistical error. This makes HLL++ functions appropriate for large data streams for which linear memory usage is impractical, as well as for data that is already approximate.

If you do not need materialized sketches, you can alternatively use an approximate aggregate function with system-defined precision, such as APPROX_COUNT_DISTINCT. However, APPROX_COUNT_DISTINCT does not allow partial aggregations, re-aggregations, and custom precision.

BigQuery supports the following HLL++ functions:

HLL_COUNT.INIT

HLL_COUNT.INIT(input [, precision])

Description

An aggregate function that takes one or more input values and aggregates them into a HLL++ sketch. Each sketch is represented using the BYTES data type. You can then merge sketches using HLL_COUNT.MERGE or HLL_COUNT.MERGE_PARTIAL. If no merging is needed, you can extract the final count of distinct values from the sketch using HLL_COUNT.EXTRACT.

This function supports an optional parameter, precision. This parameter defines the accuracy of the estimate at the cost of additional memory required to process the sketches or store them on disk. The range for this value is 10 to 24. The default value is 15. For more information about precision, see Precision for sketches.

If the input is NULL, this function returns NULL.

For more information, see HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.

Supported input types

  • INT64
  • NUMERIC
  • BIGNUMERIC
  • STRING
  • BYTES

Return type

BYTES

Example

The following query creates HLL++ sketches that count the number of distinct users with at least one invoice per country.

SELECT
  country,
  HLL_COUNT.INIT(customer_id, 10)
    AS hll_sketch
FROM
  UNNEST(
    ARRAY<STRUCT<country STRING, customer_id STRING, invoice_id STRING>>[
      ('UA', 'customer_id_1', 'invoice_id_11'),
      ('CZ', 'customer_id_2', 'invoice_id_22'),
      ('CZ', 'customer_id_2', 'invoice_id_23'),
      ('BR', 'customer_id_3', 'invoice_id_31'),
      ('UA', 'customer_id_2', 'invoice_id_24')])
GROUP BY country;

+---------+------------------------------------------------------------------------------------+
| country | hll_sketch                                                                         |
+---------+------------------------------------------------------------------------------------+
| UA      | "\010p\020\002\030\002 \013\202\007\r\020\002\030\n \0172\005\371\344\001\315\010" |
| CZ      | "\010p\020\002\030\002 \013\202\007\013\020\001\030\n \0172\003\371\344\001"       |
| BR      | "\010p\020\001\030\002 \013\202\007\013\020\001\030\n \0172\003\202\341\001"       |
+---------+------------------------------------------------------------------------------------+

HLL_COUNT.MERGE

HLL_COUNT.MERGE(sketch)

Description

An aggregate function that returns the cardinality of several HLL++ set sketches by computing their union.

Each sketch must be initialized on the same type. Attempts to merge sketches for different types results in an error. For example, you cannot merge a sketch initialized from INT64 data with one initialized from STRING data.

If the merged sketches were initialized with different precisions, the precision will be downgraded to the lowest precision involved in the merge.

This function ignores NULL values when merging sketches. If the merge happens over zero rows or only over NULL values, the function returns 0.

Supported input types

BYTES

Return type

INT64

Example

The following query counts the number of distinct users across all countries who have at least one invoice.

SELECT HLL_COUNT.MERGE(hll_sketch) AS distinct_customers_with_open_invoice
FROM
  (
    SELECT
      country,
      HLL_COUNT.INIT(customer_id) AS hll_sketch
    FROM
      UNNEST(
        ARRAY<STRUCT<country STRING, customer_id STRING, invoice_id STRING, invoice_status STRING>>[
          ('UA', 'customer_id_1', 'invoice_id_11'),
          ('BR', 'customer_id_3', 'invoice_id_31'),
          ('CZ', 'customer_id_2', 'invoice_id_22'),
          ('CZ', 'customer_id_2', 'invoice_id_23'),
          ('BR', 'customer_id_3', 'invoice_id_31'),
          ('UA', 'customer_id_2', 'invoice_id_24')])
    GROUP BY country
  );

+--------------------------------------+
| distinct_customers_with_open_invoice |
+--------------------------------------+
|                                    3 |
+--------------------------------------+

HLL_COUNT.MERGE_PARTIAL

HLL_COUNT.MERGE_PARTIAL(sketch)

Description

An aggregate function that takes one or more HLL++ sketch inputs and merges them into a new sketch.

Each sketch must be initialized on the same type. Attempts to merge sketches for different types results in an error. For example, you cannot merge a sketch initialized from INT64 data with one initialized from STRING data.

If the merged sketches were initialized with different precisions, the precision will be downgraded to the lowest precision involved in the merge. For example, if MERGE_PARTIAL encounters sketches of precision 14 and 15, the returned new sketch will have precision 14.

This function returns NULL if there is no input or all inputs are NULL.

Supported input types

BYTES

Return type

BYTES

Example

The following query returns an HLL++ sketch that counts the number of distinct users who have at least one invoice across all countries.

SELECT HLL_COUNT.MERGE_PARTIAL(HLL_sketch) AS distinct_customers_with_open_invoice
FROM
  (
    SELECT
      country,
      HLL_COUNT.INIT(customer_id) AS hll_sketch
    FROM
      UNNEST(
        ARRAY<STRUCT<country STRING, customer_id STRING, invoice_id STRING, invoice_status STRING>>[
          ('UA', 'customer_id_1', 'invoice_id_11'),
          ('BR', 'customer_id_3', 'invoice_id_31'),
          ('CZ', 'customer_id_2', 'invoice_id_22'),
          ('CZ', 'customer_id_2', 'invoice_id_23'),
          ('BR', 'customer_id_3', 'invoice_id_31'),
          ('UA', 'customer_id_2', 'invoice_id_24')])
    GROUP BY country
  );

+----------------------------------------------------------------------------------------------+
| distinct_customers_with_open_invoice                                                         |
+----------------------------------------------------------------------------------------------+
| "\010p\020\006\030\002 \013\202\007\020\020\003\030\017 \0242\010\320\2408\352}\244\223\002" |
+----------------------------------------------------------------------------------------------+
HLL_COUNT.EXTRACT(sketch)

Description

A scalar function that extracts a cardinality estimate of a single HLL++ sketch.

If sketch is NULL, this function returns a cardinality estimate of 0.

Supported input types

BYTES

Return type

INT64

Example

The following query returns the number of distinct users for each country who have at least one invoice.

SELECT
  country,
  HLL_COUNT.EXTRACT(HLL_sketch) AS distinct_customers_with_open_invoice
FROM
  (
    SELECT
      country,
      HLL_COUNT.INIT(customer_id) AS hll_sketch
    FROM
      UNNEST(
        ARRAY<STRUCT<country STRING, customer_id STRING, invoice_id STRING>>[
          ('UA', 'customer_id_1', 'invoice_id_11'),
          ('BR', 'customer_id_3', 'invoice_id_31'),
          ('CZ', 'customer_id_2', 'invoice_id_22'),
          ('CZ', 'customer_id_2', 'invoice_id_23'),
          ('BR', 'customer_id_3', 'invoice_id_31'),
          ('UA', 'customer_id_2', 'invoice_id_24')])
    GROUP BY country
  );

+---------+--------------------------------------+
| country | distinct_customers_with_open_invoice |
+---------+--------------------------------------+
| UA      |                                    2 |
| BR      |                                    1 |
| CZ      |                                    1 |
+---------+--------------------------------------+

Numbering functions

The following sections describe the numbering functions that BigQuery supports. Numbering functions are a subset of window functions. To create a window function call and learn about the syntax for window functions, see Window function_calls.

Numbering functions assign integer values to each row based on their position within the specified window. The OVER clause syntax varies across numbering functions.

RANK

RANK()
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

Returns the ordinal (1-based) rank of each row within the ordered partition. All peer rows receive the same rank value. The next row or set of peer rows receives a rank value which increments by the number of peers with the previous rank value, instead of DENSE_RANK, which always increments by 1.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Type

INT64

Examples

WITH Numbers AS
 (SELECT 1 as x
  UNION ALL SELECT 2
  UNION ALL SELECT 2
  UNION ALL SELECT 5
  UNION ALL SELECT 8
  UNION ALL SELECT 10
  UNION ALL SELECT 10
)
SELECT x,
  RANK() OVER (ORDER BY x ASC) AS rank
FROM Numbers

+-------------------------+
| x          | rank       |
+-------------------------+
| 1          | 1          |
| 2          | 2          |
| 2          | 2          |
| 5          | 4          |
| 8          | 5          |
| 10         | 6          |
| 10         | 6          |
+-------------------------+
WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 2:59:01', 'F30-34')
SELECT name,
  finish_time,
  division,
  RANK() OVER (PARTITION BY division ORDER BY finish_time ASC) AS finish_rank
FROM finishers;

+-----------------+------------------------+----------+-------------+
| name            | finish_time            | division | finish_rank |
+-----------------+------------------------+----------+-------------+
| Sophia Liu      | 2016-10-18 09:51:45+00 | F30-34   | 1           |
| Meghan Lederer  | 2016-10-18 09:59:01+00 | F30-34   | 2           |
| Nikki Leith     | 2016-10-18 09:59:01+00 | F30-34   | 2           |
| Jen Edwards     | 2016-10-18 10:06:36+00 | F30-34   | 4           |
| Lisa Stelzner   | 2016-10-18 09:54:11+00 | F35-39   | 1           |
| Lauren Matthews | 2016-10-18 10:01:17+00 | F35-39   | 2           |
| Desiree Berry   | 2016-10-18 10:05:42+00 | F35-39   | 3           |
| Suzy Slane      | 2016-10-18 10:06:24+00 | F35-39   | 4           |
+-----------------+------------------------+----------+-------------+

DENSE_RANK

DENSE_RANK()
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

Returns the ordinal (1-based) rank of each row within the window partition. All peer rows receive the same rank value, and the subsequent rank value is incremented by one.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Type

INT64

Examples

WITH Numbers AS
 (SELECT 1 as x
  UNION ALL SELECT 2
  UNION ALL SELECT 2
  UNION ALL SELECT 5
  UNION ALL SELECT 8
  UNION ALL SELECT 10
  UNION ALL SELECT 10
)
SELECT x,
  DENSE_RANK() OVER (ORDER BY x ASC) AS dense_rank
FROM Numbers

+-------------------------+
| x          | dense_rank |
+-------------------------+
| 1          | 1          |
| 2          | 2          |
| 2          | 2          |
| 5          | 3          |
| 8          | 4          |
| 10         | 5          |
| 10         | 5          |
+-------------------------+
WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 2:59:01', 'F30-34')
SELECT name,
  finish_time,
  division,
  DENSE_RANK() OVER (PARTITION BY division ORDER BY finish_time ASC) AS finish_rank
FROM finishers;

+-----------------+------------------------+----------+-------------+
| name            | finish_time            | division | finish_rank |
+-----------------+------------------------+----------+-------------+
| Sophia Liu      | 2016-10-18 09:51:45+00 | F30-34   | 1           |
| Meghan Lederer  | 2016-10-18 09:59:01+00 | F30-34   | 2           |
| Nikki Leith     | 2016-10-18 09:59:01+00 | F30-34   | 2           |
| Jen Edwards     | 2016-10-18 10:06:36+00 | F30-34   | 3           |
| Lisa Stelzner   | 2016-10-18 09:54:11+00 | F35-39   | 1           |
| Lauren Matthews | 2016-10-18 10:01:17+00 | F35-39   | 2           |
| Desiree Berry   | 2016-10-18 10:05:42+00 | F35-39   | 3           |
| Suzy Slane      | 2016-10-18 10:06:24+00 | F35-39   | 4           |
+-----------------+------------------------+----------+-------------+

PERCENT_RANK

PERCENT_RANK()
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

Return the percentile rank of a row defined as (RK-1)/(NR-1), where RK is the RANK of the row and NR is the number of rows in the partition. Returns 0 if NR=1.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Type

FLOAT64

Example

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 2:59:01', 'F30-34')
SELECT name,
  finish_time,
  division,
  PERCENT_RANK() OVER (PARTITION BY division ORDER BY finish_time ASC) AS finish_rank
FROM finishers;

+-----------------+------------------------+----------+---------------------+
| name            | finish_time            | division | finish_rank         |
+-----------------+------------------------+----------+---------------------+
| Sophia Liu      | 2016-10-18 09:51:45+00 | F30-34   | 0                   |
| Meghan Lederer  | 2016-10-18 09:59:01+00 | F30-34   | 0.33333333333333331 |
| Nikki Leith     | 2016-10-18 09:59:01+00 | F30-34   | 0.33333333333333331 |
| Jen Edwards     | 2016-10-18 10:06:36+00 | F30-34   | 1                   |
| Lisa Stelzner   | 2016-10-18 09:54:11+00 | F35-39   | 0                   |
| Lauren Matthews | 2016-10-18 10:01:17+00 | F35-39   | 0.33333333333333331 |
| Desiree Berry   | 2016-10-18 10:05:42+00 | F35-39   | 0.66666666666666663 |
| Suzy Slane      | 2016-10-18 10:06:24+00 | F35-39   | 1                   |
+-----------------+------------------------+----------+---------------------+

CUME_DIST

CUME_DIST()
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

Return the relative rank of a row defined as NP/NR. NP is defined to be the number of rows that either precede or are peers with the current row. NR is the number of rows in the partition.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Type

FLOAT64

Example

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 2:59:01', 'F30-34')
SELECT name,
  finish_time,
  division,
  CUME_DIST() OVER (PARTITION BY division ORDER BY finish_time ASC) AS finish_rank
FROM finishers;

+-----------------+------------------------+----------+-------------+
| name            | finish_time            | division | finish_rank |
+-----------------+------------------------+----------+-------------+
| Sophia Liu      | 2016-10-18 09:51:45+00 | F30-34   | 0.25        |
| Meghan Lederer  | 2016-10-18 09:59:01+00 | F30-34   | 0.75        |
| Nikki Leith     | 2016-10-18 09:59:01+00 | F30-34   | 0.75        |
| Jen Edwards     | 2016-10-18 10:06:36+00 | F30-34   | 1           |
| Lisa Stelzner   | 2016-10-18 09:54:11+00 | F35-39   | 0.25        |
| Lauren Matthews | 2016-10-18 10:01:17+00 | F35-39   | 0.5         |
| Desiree Berry   | 2016-10-18 10:05:42+00 | F35-39   | 0.75        |
| Suzy Slane      | 2016-10-18 10:06:24+00 | F35-39   | 1           |
+-----------------+------------------------+----------+-------------+

NTILE

NTILE(constant_integer_expression)
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

This function divides the rows into constant_integer_expression buckets based on row ordering and returns the 1-based bucket number that is assigned to each row. The number of rows in the buckets can differ by at most 1. The remainder values (the remainder of number of rows divided by buckets) are distributed one for each bucket, starting with bucket 1. If constant_integer_expression evaluates to NULL, 0 or negative, an error is provided.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Type

INT64

Example

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 2:59:01', 'F30-34')
SELECT name,
  finish_time,
  division,
  NTILE(3) OVER (PARTITION BY division ORDER BY finish_time ASC) AS finish_rank
FROM finishers;

+-----------------+------------------------+----------+-------------+
| name            | finish_time            | division | finish_rank |
+-----------------+------------------------+----------+-------------+
| Sophia Liu      | 2016-10-18 09:51:45+00 | F30-34   | 1           |
| Meghan Lederer  | 2016-10-18 09:59:01+00 | F30-34   | 1           |
| Nikki Leith     | 2016-10-18 09:59:01+00 | F30-34   | 2           |
| Jen Edwards     | 2016-10-18 10:06:36+00 | F30-34   | 3           |
| Lisa Stelzner   | 2016-10-18 09:54:11+00 | F35-39   | 1           |
| Lauren Matthews | 2016-10-18 10:01:17+00 | F35-39   | 1           |
| Desiree Berry   | 2016-10-18 10:05:42+00 | F35-39   | 2           |
| Suzy Slane      | 2016-10-18 10:06:24+00 | F35-39   | 3           |
+-----------------+------------------------+----------+-------------+

ROW_NUMBER

ROW_NUMBER()
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]

Description

Does not require the ORDER BY clause. Returns the sequential row ordinal (1-based) of each row for each ordered partition. If the ORDER BY clause is unspecified then the result is non-deterministic.

To learn more about the OVER clause and how to use it, see Window function calls.

Return Type

INT64

Examples

WITH Numbers AS
 (SELECT 1 as x
  UNION ALL SELECT 2
  UNION ALL SELECT 2
  UNION ALL SELECT 5
  UNION ALL SELECT 8
  UNION ALL SELECT 10
  UNION ALL SELECT 10
)
SELECT x,
  ROW_NUMBER() OVER (ORDER BY x) AS row_num
FROM Numbers

+-------------------------+
| x          | row_num    |
+-------------------------+
| 1          | 1          |
| 2          | 2          |
| 2          | 3          |
| 5          | 4          |
| 8          | 5          |
| 10         | 6          |
| 10         | 7          |
+-------------------------+
WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 2:59:01', 'F30-34')
SELECT name,
  finish_time,
  division,
  ROW_NUMBER() OVER (PARTITION BY division ORDER BY finish_time ASC) AS finish_rank
FROM finishers;

+-----------------+------------------------+----------+-------------+
| name            | finish_time            | division | finish_rank |
+-----------------+------------------------+----------+-------------+
| Sophia Liu      | 2016-10-18 09:51:45+00 | F30-34   | 1           |
| Meghan Lederer  | 2016-10-18 09:59:01+00 | F30-34   | 2           |
| Nikki Leith     | 2016-10-18 09:59:01+00 | F30-34   | 3           |
| Jen Edwards     | 2016-10-18 10:06:36+00 | F30-34   | 4           |
| Lisa Stelzner   | 2016-10-18 09:54:11+00 | F35-39   | 1           |
| Lauren Matthews | 2016-10-18 10:01:17+00 | F35-39   | 2           |
| Desiree Berry   | 2016-10-18 10:05:42+00 | F35-39   | 3           |
| Suzy Slane      | 2016-10-18 10:06:24+00 | F35-39   | 4           |
+-----------------+------------------------+----------+-------------+

Bit functions

BigQuery supports the following bit functions.

BIT_COUNT

BIT_COUNT(expression)

Description

The input, expression, must be an integer or BYTES.

Returns the number of bits that are set in the input expression. For signed integers, this is the number of bits in two's complement form.

Return Data Type

INT64

Example

SELECT a, BIT_COUNT(a) AS a_bits, FORMAT("%T", b) as b, BIT_COUNT(b) AS b_bits
FROM UNNEST([
  STRUCT(0 AS a, b'' AS b), (0, b'\x00'), (5, b'\x05'), (8, b'\x00\x08'),
  (0xFFFF, b'\xFF\xFF'), (-2, b'\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE'),
  (-1, b'\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF'),
  (NULL, b'\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF')
]) AS x;

+-------+--------+---------------------------------------------+--------+
| a     | a_bits | b                                           | b_bits |
+-------+--------+---------------------------------------------+--------+
| 0     | 0      | b""                                         | 0      |
| 0     | 0      | b"\x00"                                     | 0      |
| 5     | 2      | b"\x05"                                     | 2      |
| 8     | 1      | b"\x00\x08"                                 | 1      |
| 65535 | 16     | b"\xff\xff"                                 | 16     |
| -2    | 63     | b"\xff\xff\xff\xff\xff\xff\xff\xfe"         | 63     |
| -1    | 64     | b"\xff\xff\xff\xff\xff\xff\xff\xff"         | 64     |
| NULL  | NULL   | b"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" | 80     |
+-------+--------+---------------------------------------------+--------+

Conversion functions

BigQuery supports the following conversion functions. These data type conversions are explicit, but some conversions can happen implicitly. You can learn more about implicit and explicit conversion here.

CAST overview

CAST(expression AS typename [format_clause])

Description

Cast syntax is used in a query to indicate that the result type of an expression should be converted to some other type.

When using CAST, a query can fail if BigQuery is unable to perform the cast. If you want to protect your queries from these types of errors, you can use SAFE_CAST.

Casts between supported types that do not successfully map from the original value to the target domain produce runtime errors. For example, casting BYTES to STRING where the byte sequence is not valid UTF-8 results in a runtime error.

Some casts can include a format clause, which provides instructions for how to conduct the cast. For example, you could instruct a cast to convert a sequence of bytes to a BASE64-encoded string instead of a UTF-8-encoded string.

The structure of the format clause is unique to each type of cast and more information is available in the section for that cast.

Examples

The following query results in "true" if x is 1, "false" for any other non-NULL value, and NULL if x is NULL.

CAST(x=1 AS STRING)

CAST AS ARRAY

CAST(expression AS ARRAY<element_type>)

Description

BigQuery supports casting to ARRAY. The expression parameter can represent an expression for these data types:

  • ARRAY

Conversion rules

FromToRule(s) when casting x
ARRAY ARRAY Must be the exact same ARRAY type.

CAST AS BIGNUMERIC

CAST(expression AS BIGNUMERIC)

Description

BigQuery supports casting to BIGNUMERIC. The expression parameter can represent an expression for these data types:

  • INT64
  • FLOAT64
  • NUMERIC
  • BIGNUMERIC
  • STRING

Conversion rules

FromToRule(s) when casting x
FLOAT64 BIGNUMERIC The floating point number will round half away from zero. Casting a NaN, +inf or -inf will return an error. Casting a value outside the range of BIGNUMERIC will return an overflow error.
STRING BIGNUMERIC The numeric literal contained in the STRING must not exceed the maximum precision or range of the BIGNUMERIC type, or an error will occur. If the number of digits after the decimal point exceeds 38, then the resulting BIGNUMERIC value will round half away from zero to have 38 digits after the decimal point.

CAST AS BOOL

CAST(expression AS BOOL)

Description

BigQuery supports casting to BOOL. The expression parameter can represent an expression for these data types:

  • INT64
  • BOOL
  • STRING

Conversion rules

FromToRule(s) when casting x
INT64 BOOL Returns FALSE if x is 0, TRUE otherwise.
STRING BOOL Returns TRUE if x is "true" and FALSE if x is "false"
All other values of x are invalid and throw an error instead of casting to BOOL.
STRINGs are case-insensitive when converting to BOOL.

CAST AS BYTES

CAST(expression AS BYTES [format_clause])

Description

BigQuery supports casting to BYTES. The expression parameter can represent an expression for these data types:

  • BYTES
  • STRING

Format clause

When an expression of one type is cast to another type, you can use the format clause to provide instructions for how to conduct the cast. You can use the format clause in this section if expression is a STRING.

  • Format string as bytes

Conversion rules

FromToRule(s) when casting x
STRING BYTES STRINGs are cast to BYTES using UTF-8 encoding. For example, the STRING "©", when cast to BYTES, would become a 2-byte sequence with the hex values C2 and A9.

CAST AS DATE

CAST(expression AS DATE [format_clause])

Description

BigQuery supports casting to DATE. The expression parameter can represent an expression for these data types:

  • STRING
  • TIME
  • DATETIME
  • TIMESTAMP

Format clause

When an expression of one type is cast to another type, you can use the format clause to provide instructions for how to conduct the cast. You can use the format clause in this section if expression is a STRING.

  • Format string as date and time

Conversion rules

FromToRule(s) when casting x
STRING DATE When casting from string to date, the string must conform to the supported date literal format, and is independent of time zone. If the string expression is invalid or represents a date that is outside of the supported min/max range, then an error is produced.
TIMESTAMP DATE Casting from a timestamp to date effectively truncates the timestamp as of the default time zone.

CAST AS DATETIME

CAST(expression AS DATETIME [format_clause])

Description

BigQuery supports casting to DATETIME. The expression parameter can represent an expression for these data types:

  • STRING
  • TIME
  • DATETIME
  • TIMESTAMP

Format clause

When an expression of one type is cast to another type, you can use the format clause to provide instructions for how to conduct the cast. You can use the format clause in this section if expression is a STRING.

  • Format string as date and time

Conversion rules

FromToRule(s) when casting x
STRING DATETIME When casting from string to datetime, the string must conform to the supported datetime literal format, and is independent of time zone. If the string expression is invalid or represents a datetime that is outside of the supported min/max range, then an error is produced.
TIMESTAMP DATETIME Casting from a timestamp to datetime effectively truncates the timestamp as of the default time zone.

CAST AS FLOAT64

CAST(expression AS FLOAT64)

Description

BigQuery supports casting to floating point types. The expression parameter can represent an expression for these data types:

  • INT64
  • FLOAT64
  • NUMERIC
  • BIGNUMERIC
  • STRING

Conversion rules

FromToRule(s) when casting x
INT64 FLOAT64 Returns a close but potentially not exact floating point value.
NUMERIC FLOAT64 NUMERIC will convert to the closest floating point number with a possible loss of precision.
BIGNUMERIC FLOAT64 BIGNUMERIC will convert to the closest floating point number with a possible loss of precision.
STRING FLOAT64 Returns x as a floating point value, interpreting it as having the same form as a valid floating point literal. Also supports casts from "[+,-]inf" to [,-]Infinity, "[+,-]infinity" to [,-]Infinity, and "[+,-]nan" to NaN. Conversions are case-insensitive.

CAST AS INT64

CAST(expression AS INT64)

Description

BigQuery supports casting to integer types. The expression parameter can represent an expression for these data types:

  • INT64
  • FLOAT64
  • NUMERIC
  • BIGNUMERIC
  • BOOL
  • STRING

Conversion rules

FromToRule(s) when casting x
FLOAT64 INT64 Returns the closest integer value.
Halfway cases such as 1.5 or -0.5 round away from zero.
BOOL INT64 Returns 1 if x is TRUE, 0 otherwise.
STRING INT64 A hex string can be cast to an integer. For example, 0x123 to 291 or -0x123 to -291.

Examples

If you are working with hex strings (0x123), you can cast those strings as integers:

SELECT '0x123' as hex_value, CAST('0x123' as INT64) as hex_to_int;

+-----------+------------+
| hex_value | hex_to_int |
+-----------+------------+
| 0x123     | 291        |
+-----------+------------+
SELECT '-0x123' as hex_value, CAST('-0x123' as INT64) as hex_to_int;

+-----------+------------+
| hex_value | hex_to_int |
+-----------+------------+
| -0x123    | -291       |
+-----------+------------+

CAST AS INTERVAL

CAST(expression AS INTERVAL)

Description

BigQuery supports casting to INTERVAL. The expression parameter can represent an expression for these data types:

  • STRING

Conversion rules

FromToRule(s) when casting x
STRING INTERVAL When casting from string to interval, the string must conform to either ISO 8601 Duration standard or to interval literal format 'Y-M D H:M:S.F'. Partial interval literal formats are also accepted when they are not ambiguous, for example 'H:M:S'. If the string expression is invalid or represents an interval that is outside of the supported min/max range, then an error is produced.

Examples

SELECT input, CAST(input AS INTERVAL) AS output
FROM UNNEST([
  '1-2 3 10:20:30.456',
  '1-2',
  '10:20:30',
  'P1Y2M3D',
  'PT10H20M30,456S'
]) input

+--------------------+--------------------+
| input              | output             |
+--------------------+--------------------+
| 1-2 3 10:20:30.456 | 1-2 3 10:20:30.456 |
| 1-2                | 1-2 0 0:0:0        |
| 10:20:30           | 0-0 0 10:20:30     |
| P1Y2M3D            | 1-2 3 0:0:0        |
| PT10H20M30,456S    | 0-0 0 10:20:30.456 |
+--------------------+--------------------+

CAST AS NUMERIC

CAST(expression AS NUMERIC)

Description

BigQuery supports casting to NUMERIC. The expression parameter can represent an expression for these data types:

  • INT64
  • FLOAT64
  • NUMERIC
  • BIGNUMERIC
  • STRING

Conversion rules

FromToRule(s) when casting x
FLOAT64 NUMERIC The floating point number will round half away from zero. Casting a NaN, +inf or -inf will return an error. Casting a value outside the range of NUMERIC will return an overflow error.
STRING NUMERIC The numeric literal contained in the STRING must not exceed the maximum precision or range of the NUMERIC type, or an error will occur. If the number of digits after the decimal point exceeds nine, then the resulting NUMERIC value will round half away from zero to have nine digits after the decimal point.

CAST AS STRING

CAST(expression AS STRING [format_clause [AT TIME ZONE timezone_expr]])

Description

BigQuery supports casting to STRING. The expression parameter can represent an expression for these data types:

  • INT64
  • FLOAT64
  • NUMERIC
  • BIGNUMERIC
  • BOOL
  • BYTES
  • TIME
  • DATE
  • DATETIME
  • TIMESTAMP
  • INTERVAL
  • STRING

Format clause

When an expression of one type is cast to another type, you can use the format clause to provide instructions for how to conduct the cast. You can use the format clause in this section if expression is one of these data types:

  • INT64
  • FLOAT64
  • NUMERIC
  • BIGNUMERIC
  • BYTES
  • TIME
  • DATE
  • DATETIME
  • TIMESTAMP

The format clause for STRING has an additional optional clause called AT TIME ZONE timezone_expr, which you can use to specify a specific time zone to use during formatting of a TIMESTAMP. If this optional clause is not included when formatting a TIMESTAMP, your current time zone is used.

For more information, see the following topics:

  • Format bytes as string
  • Format date and time as string
  • Format numeric type as string

Conversion rules

FromToRule(s) when casting x
FLOAT64 STRING Returns an approximate string representation. A returned NaN or 0 will not be signed.
BOOL STRING Returns "true" if x is TRUE, "false" otherwise.
BYTES STRING Returns x interpreted as a UTF-8 STRING.
For example, the BYTES literal b'\xc2\xa9', when cast to STRING, is interpreted as UTF-8 and becomes the unicode character "©".
An error occurs if x is not valid UTF-8.
TIME STRING Casting from a time type to a string is independent of time zone and is of the form HH:MM:SS.
DATE STRING Casting from a date type to a string is independent of time zone and is of the form YYYY-MM-DD.
DATETIME STRING Casting from a datetime type to a string is independent of time zone and is of the form YYYY-MM-DD HH:MM:SS.
TIMESTAMP STRING When casting from timestamp types to string, the timestamp is interpreted using the default time zone, UTC. The number of subsecond digits produced depends on the number of trailing zeroes in the subsecond part: the CAST function will truncate zero, three, or six digits.
INTERVAL STRING Casting from an interval to a string is of the form Y-M D H:M:S.

Examples

SELECT CAST(CURRENT_DATE() AS STRING) AS current_date

+---------------+
| current_date  |
+---------------+
| 2021-03-09    |
+---------------+
SELECT CAST(CURRENT_DATE() AS STRING FORMAT 'DAY') AS current_day

+-------------+
| current_day |
+-------------+
| MONDAY      |
+-------------+
SELECT CAST(
  TIMESTAMP '2008-12-25 00:00:00+00:00'
  AS STRING FORMAT 'YYYY-MM-DD HH24:MI:SS TZH:TZM') AS date_time_to_string

-- Results depend upon where this query was executed.
+------------------------------+
| date_time_to_string          |
+------------------------------+
| 2008-12-24 16:00:00 -08:00   |
+------------------------------+
SELECT CAST(
  TIMESTAMP '2008-12-25 00:00:00+00:00'
  AS STRING FORMAT 'YYYY-MM-DD HH24:MI:SS TZH:TZM'
  AT TIME ZONE 'Asia/Kolkata') AS date_time_to_string

-- Because the time zone is specified, the result is always the same.
+------------------------------+
| date_time_to_string          |
+------------------------------+
| 2008-12-25 05:30:00 +05:30   |
+------------------------------+
SELECT CAST(INTERVAL 3 DAY AS STRING) AS interval_to_string

+--------------------+
| interval_to_string |
+--------------------+
| 0-0 3 0:0:0        |
+--------------------+
SELECT CAST(
  INTERVAL "1-2 3 4:5:6.789" YEAR TO SECOND
  AS STRING) AS interval_to_string

+--------------------+
| interval_to_string |
+--------------------+
| 1-2 3 4:5:6.789    |
+--------------------+

CAST AS STRUCT

CAST(expression AS STRUCT)

Description

BigQuery supports casting to STRUCT. The expression parameter can represent an expression for these data types:

  • STRUCT

Conversion rules

FromToRule(s) when casting x
STRUCT STRUCT Allowed if the following conditions are met:
  1. The two STRUCTs have the same number of fields.
  2. The original STRUCT field types can be explicitly cast to the corresponding target STRUCT field types (as defined by field order, not field name).

CAST AS TIME

CAST(expression AS TIME [format_clause])

Description

BigQuery supports casting to TIME. The expression parameter can represent an expression for these data types:

  • STRING
  • TIME
  • DATETIME
  • TIMESTAMP

Format clause

When an expression of one type is cast to another type, you can use the format clause to provide instructions for how to conduct the cast. You can use the format clause in this section if expression is a STRING.

  • Format string as date and time

Conversion rules

FromToRule(s) when casting x
STRING TIME When casting from string to time, the string must conform to the supported time literal format, and is independent of time zone. If the string expression is invalid or represents a time that is outside of the supported min/max range, then an error is produced.

CAST AS TIMESTAMP

CAST(expression AS TIMESTAMP [format_clause [AT TIME ZONE timezone_expr]])

Description

BigQuery supports casting to TIMESTAMP. The expression parameter can represent an expression for these data types:

  • STRING
  • TIME
  • DATETIME
  • TIMESTAMP

Format clause

When an expression of one type is cast to another type, you can use the format clause to provide instructions for how to conduct the cast. You can use the format clause in this section if expression is a STRING.

  • Format string as date and time

The format clause for TIMESTAMP has an additional optional clause called AT TIME ZONE timezone_expr, which you can use to specify a specific time zone to use during formatting. If this optional clause is not included, your current time zone is used.

Conversion rules

FromToRule(s) when casting x
STRING TIMESTAMP When casting from string to a timestamp, string_expression must conform to the supported timestamp literal formats, or else a runtime error occurs. The string_expression may itself contain a time zone.

If there is a time zone in the string_expression, that time zone is used for conversion, otherwise the default time zone, UTC, is used. If the string has fewer than six digits, then it is implicitly widened.

An error is produced if the string_expression is invalid, has more than six subsecond digits (i.e. precision greater than microseconds), or represents a time outside of the supported timestamp range.

DATE TIMESTAMP Casting from a date to a timestamp interprets date_expression as of midnight (start of the day) in the default time zone, UTC.
DATETIME TIMESTAMP Casting from a datetime to a timestamp interprets datetime_expression in the default time zone, UTC.

Most valid datetime values have exactly one corresponding timestamp in each time zone. However, there are certain combinations of valid datetime values and time zones that have zero or two corresponding timestamp values. This happens in a time zone when clocks are set forward or set back, such as for Daylight Savings Time. When there are two valid timestamps, the earlier one is used. When there is no valid timestamp, the length of the gap in time (typically one hour) is added to the datetime.

Examples

The following example casts a string-formatted timestamp as a timestamp:

SELECT CAST("2020-06-02 17:00:53.110+00:00" AS TIMESTAMP) AS as_timestamp

-- Results depend upon where this query was executed.
+-----------------------------+
| as_timestamp                |
+-----------------------------+
| 2020-06-03 00:00:53.110 UTC |
+-----------------------------+

The following examples cast a string-formatted date and time as a timestamp. These examples return the same output as the previous example.

SELECT CAST("06/02/2020 17:00:53.110" AS TIMESTAMP FORMAT 'MM/DD/YYYY HH:MI:SS' AT TIME ZONE 'America/Los_Angeles') AS as_timestamp
SELECT CAST("06/02/2020 17:00:53.110" AS TIMESTAMP FORMAT 'MM/DD/YYYY HH:MI:SS' AT TIME ZONE '00') AS as_timestamp
SELECT CAST('06/02/2020 17:00:53.110 +00' AS TIMESTAMP FORMAT 'YYYY-MM-DD HH:MI:SS TZH') AS as_timestamp

PARSE_BIGNUMERIC

PARSE_BIGNUMERIC(string_expression)

Description

Converts a string to a BIGNUMERIC value.

The numeric literal contained in the string must not exceed the maximum precision or range of the BIGNUMERIC type, or an error occurs. If the number of digits after the decimal point exceeds 38, then the resulting BIGNUMERIC value rounds half away from zero to have 38 digits after the decimal point.


-- This example shows how a string with a decimal point is parsed.
SELECT PARSE_BIGNUMERIC("123.45") AS parsed

+--------+
| parsed |
+--------+
| 123.45 |
+--------+

-- This example shows how a string with an exponent is parsed.
SELECT PARSE_BIGNUMERIC("123.456E37") AS parsed

+-----------------------------------------+
| parsed                                  |
+-----------------------------------------+
| 123400000000000000000000000000000000000 |
+-----------------------------------------+

-- This example shows the rounding when digits after the decimal point exceeds 38.
SELECT PARSE_BIGNUMERIC("1.123456789012345678901234567890123456789") as parsed

+------------------------------------------+
| parsed                                   |
+------------------------------------------+
| 1.12345678901234567890123456789012345679 |
+------------------------------------------+

This funcion is similar to using the CAST AS BIGNUMERIC function except that the PARSE_BIGNUMERIC function only accepts string inputs and allows the following in the string:

  • Spaces between the sign (+/-) and the number
  • Signs (+/-) after the number

Rules for valid input strings:

RuleExample InputOutput
The string can only contain digits, commas, decimal points and signs. "- 12,34567,89.0" -123456789
Whitepaces are allowed anywhere except between digits. " - 12.345 " -12.345
Only digits and commas are allowed before the decimal point. " 12,345,678" 12345678
Only digits are allowed after the decimal point. "1.234 " 1.234
Use E or e for exponents. After the e, digits and a leading sign indicator are allowed. " 123.45e-1" 12.345
If the integer part is not empty, then it must contain at least one digit. " 0,.12 -" -0.12
If the string contains a decimal point, then it must contain at least one digit. " .1" 0.1
The string cannot contain more than one sign. " 0.5 +" 0.5

Return Data Type

BIGNUMERIC

Examples

This example shows an input with spaces before, after, and between the sign and the number:

SELECT PARSE_BIGNUMERIC("  -  12.34 ") as parsed;

+--------+
| parsed |
+--------+
| -12.34 |
+--------+

This example shows an input with an exponent as well as the sign after the number:

SELECT PARSE_BIGNUMERIC("12.34e-1-") as parsed;

+--------+
| parsed |
+--------+
| -1.234 |
+--------+

This example shows an input with multiple commas in the integer part of the number:

SELECT PARSE_BIGNUMERIC("  1,2,,3,.45 + ") as parsed;

+--------+
| parsed |
+--------+
| 123.45 |
+--------+

This example shows an input with a decimal point and no digits in the whole number part:

SELECT PARSE_BIGNUMERIC(".1234  ") as parsed;

+--------+
| parsed |
+--------+
| 0.1234 |
+--------+

Examples of invalid inputs

This example is invalid because the whole number part contains no digits:

SELECT PARSE_BIGNUMERIC(",,,.1234  ") as parsed;

This example is invalid because there are whitespaces between digits:

SELECT PARSE_BIGNUMERIC("1  23.4 5  ") as parsed;

This example is invalid because the number is empty except for an exponent:

SELECT PARSE_BIGNUMERIC("  e1 ") as parsed;

This example is invalid because the string contains multiple signs:

SELECT PARSE_BIGNUMERIC("  - 12.3 - ") as parsed;

This example is invalid because the value of the number falls outside the range of BIGNUMERIC:

SELECT PARSE_BIGNUMERIC("12.34E100 ") as parsed;

This example is invalid because the string contains invalid characters:

SELECT PARSE_BIGNUMERIC("$12.34") as parsed;

PARSE_NUMERIC

PARSE_NUMERIC(string_expression)

Description

Converts a string to a NUMERIC value.

The numeric literal contained in the string must not exceed the maximum precision or range of the NUMERIC type, or an error occurs. If the number of digits after the decimal point exceeds nine, then the resulting NUMERIC value rounds half away from zero to have nine digits after the decimal point.


-- This example shows how a string with a decimal point is parsed.
SELECT PARSE_NUMERIC("123.45") AS parsed

+--------+
| parsed |
+--------+
| 123.45 |
+--------+

-- This example shows how a string with an exponent is parsed.
SELECT PARSE_NUMERIC("12.34E27") as parsed

+-------------------------------+
| parsed                        |
+-------------------------------+
| 12340000000000000000000000000 |
+-------------------------------+

-- This example shows the rounding when digits after the decimal point exceeds 9.
SELECT PARSE_NUMERIC("1.0123456789") as parsed

+-------------+
| parsed      |
+-------------+
| 1.012345679 |
+-------------+

This function is similar to using the CAST AS NUMERIC function except that the PARSE_NUMERIC function only accepts string inputs and allows the following in the string:

  • Spaces between the sign (+/-) and the number
  • Signs (+/-) after the number

Rules for valid input strings:

RuleExample InputOutput
The string can only contain digits, commas, decimal points and signs. "- 12,34567,89.0" -123456789
Whitepaces are allowed anywhere except between digits. " - 12.345 " -12.345
Only digits and commas are allowed before the decimal point. " 12,345,678" 12345678
Only digits are allowed after the decimal point. "1.234 " 1.234
Use E or e for exponents. After the e, digits and a leading sign indicator are allowed. " 123.45e-1" 12.345
If the integer part is not empty, then it must contain at least one digit. " 0,.12 -" -0.12
If the string contains a decimal point, then it must contain at least one digit. " .1" 0.1
The string cannot contain more than one sign. " 0.5 +" 0.5

Return Data Type

NUMERIC

Examples

This example shows an input with spaces before, after, and between the sign and the number:

SELECT PARSE_NUMERIC("  -  12.34 ") as parsed;

+--------+
| parsed |
+--------+
| -12.34 |
+--------+

This example shows an input with an exponent as well as the sign after the number:

SELECT PARSE_NUMERIC("12.34e-1-") as parsed;

+--------+
| parsed |
+--------+
| -1.234 |
+--------+

This example shows an input with multiple commas in the integer part of the number:

SELECT PARSE_NUMERIC("  1,2,,3,.45 + ") as parsed;

+--------+
| parsed |
+--------+
| 123.45 |
+--------+

This example shows an input with a decimal point and no digits in the whole number part:

SELECT PARSE_NUMERIC(".1234  ") as parsed;

+--------+
| parsed |
+--------+
| 0.1234 |
+--------+

Examples of invalid inputs

This example is invalid because the whole number part contains no digits:

SELECT PARSE_NUMERIC(",,,.1234  ") as parsed;

This example is invalid because there are whitespaces between digits:

SELECT PARSE_NUMERIC("1  23.4 5  ") as parsed;

This example is invalid because the number is empty except for an exponent:

SELECT PARSE_NUMERIC("  e1 ") as parsed;

This example is invalid because the string contains multiple signs:

SELECT PARSE_NUMERIC("  - 12.3 - ") as parsed;

This example is invalid because the value of the number falls outside the range of BIGNUMERIC:

SELECT PARSE_NUMERIC("12.34E100 ") as parsed;

This example is invalid because the string contains invalid characters:

SELECT PARSE_NUMERIC("$12.34") as parsed;

SAFE_CAST

SAFE_CAST(expression AS typename [format_clause])

Description

When using CAST, a query can fail if BigQuery is unable to perform the cast. For example, the following query generates an error:

SELECT CAST("apple" AS INT64) AS not_a_number;

If you want to protect your queries from these types of errors, you can use SAFE_CAST. SAFE_CAST is identical to CAST, except it returns NULL instead of raising an error.

SELECT SAFE_CAST("apple" AS INT64) AS not_a_number;

+--------------+
| not_a_number |
+--------------+
| NULL         |
+--------------+

If you are casting from bytes to strings, you can also use the function, SAFE_CONVERT_BYTES_TO_STRING. Any invalid UTF-8 characters are replaced with the unicode replacement character, U+FFFD. See SAFE_CONVERT_BYTES_TO_STRING for more information.

Other conversion functions

You can learn more about these conversion functions elsewhere in the documentation:

Conversion functionFromTo
ARRAY_TO_STRING ARRAY STRING
BOOL JSON BOOL
DATE Various data types DATE
DATETIME Various data types DATETIME
FLOAT64 JSON FLOAT64
FROM_BASE32 STRING BYTEs
FROM_BASE64 STRING BYTES
FROM_HEX STRING BYTES
INT64 JSON INT64
PARSE_DATE STRING DATE
PARSE_DATETIME STRING DATETIME
PARSE_JSON STRING JSON
PARSE_TIME STRING TIME
PARSE_TIMESTAMP STRING TIMESTAMP
SAFE_CONVERT_BYTES_TO_STRING BYTES STRING
STRING TIMESTAMP STRING
STRING JSON STRING
TIME Various data types TIME
TIMESTAMP Various data types TIMESTAMP
TO_BASE32 BYTES STRING
TO_BASE64 BYTES STRING
TO_HEX BYTES STRING
TO_JSON All data types JSON
TO_JSON_STRING All data types STRING

Format clause for CAST

format_clause:
  FORMAT format_model

format_model:
  format_string_expression

The format clause can be used in some CAST functions. You use a format clause to provide instructions for how to conduct a cast. For example, you could instruct a cast to convert a sequence of bytes to a BASE64-encoded string instead of a UTF-8-encoded string.

The format clause includes a format model. The format model can contain format elements combined together as a format string.

Format bytes as string

CAST(bytes_expression AS STRING FORMAT format_string_expression)

You can cast a sequence of bytes to a string with a format element in the format string. If the bytes cannot be formatted with a format element, an error is returned. If the sequence of bytes is NULL, the result is NULL. Format elements are case-insensitive.

Format elementReturnsExample
HEX Converts a sequence of bytes into a hexadecimal string. Input: b'\x00\x01\xEF\xFF'
Output: 0001efff
BASEX Converts a sequence of bytes into a BASEX encoded string. X represents one of these numbers: 2, 8, 16, 32, 64. Input as BASE8: b'\x02\x11\x3B'
Output: 00410473
BASE64M Converts a sequence of bytes into a BASE64-encoded string based on rfc 2045 for MIME. Generates a newline character ("\n") every 76 characters. Input: b'\xde\xad\xbe\xef'
Output: 3q2+7w==
ASCII Converts a sequence of bytes that are ASCII values to a string. If the input contains bytes that are not a valid ASCII encoding, an error is returned. Input: b'\x48\x65\x6c\x6c\x6f'
Output: Hello
UTF-8 Converts a sequence of bytes that are UTF-8 values to a string. If the input contains bytes that are not a valid UTF-8 encoding, an error is returned. Input: b'\x24'
Output: $
UTF8 Same behavior as UTF-8.

Return type

STRING

Example

SELECT CAST(b'\x48\x65\x6c\x6c\x6f' AS STRING FORMAT 'ASCII') AS bytes_to_string;

+-----------------+
| bytes_to_string |
+-----------------+
| Hello           |
+-----------------+

Format string as bytes

CAST(string_expression AS BYTES FORMAT format_string_expression)

You can cast a string to bytes with a format element in the format string. If the string cannot be formatted with the format element, an error is returned. Format elements are case-insensitive.

In the string expression, whitespace characters, such as \n, are ignored if the BASE64 or BASE64M format element is used.

Format elementReturnsExample
HEX Converts a hexadecimal-encoded string to bytes. If the input contains characters that are not part of the HEX encoding alphabet (0~9, case-insensitive a~f), an error is returned. Input: '0001efff'
Output: b'\x00\x01\xEF\xFF'
BASEX Converts a BASEX-encoded string to bytes. X represents one of these numbers: 2, 8, 16, 32, 64. An error is returned if the input contains characters that are not part of the BASEX encoding alphabet, except whitespace characters if the format element is BASE64. Input as BASE8: '00410473'
Output: b'\x02\x11\x3B'
BASE64M Converts a BASE64-encoded string to bytes. If the input contains characters that are not whitespace and not part of the BASE64 encoding alphabet defined at rfc 2045, an error is returned. BASE64M and BASE64 decoding have the same behavior. Input: '3q2+7w=='
Output: b'\xde\xad\xbe\xef'
ASCII Converts a string with only ASCII characters to bytes. If the input contains characters that are not ASCII characters, an error is returned. Input: 'Hello'
Output: b'\x48\x65\x6c\x6c\x6f'
UTF-8 Converts a string to a sequence of UTF-8 bytes. Input: '$'
Output: b'\x24'
UTF8 Same behavior as UTF-8.

Return type

BYTES

Example

SELECT CAST('Hello' AS BYTES FORMAT 'ASCII') AS string_to_bytes

+-------------------------+
| string_to_bytes         |
+-------------------------+
| b'\x48\x65\x6c\x6c\x6f' |
+-------------------------+

Format date and time as string

You can format these date and time parts as a string:

  • Format year part as string
  • Format month part as string
  • Format day part as string
  • Format hour part as string
  • Format minute part as string
  • Format second part as string
  • Format meridian indicator as string
  • Format time zone as string
  • Format literal as string

Case matching is supported when you format some date or time parts as a string and the output contains letters. To learn more, see Case matching.

Case matching

When the output of some format element contains letters, the letter cases of the output is matched with the letter cases of the format element, meaning the words in the output are capitalized according to how the format element is capitalized. This is called case matching. The rules are:

  • If the first two letters of the element are both upper case, the words in the output are capitalized. For example DAY = THURSDAY.
  • If the first letter of the element is upper case, and the second letter is lowercase, the first letter of each word in the output is capitalized and other letters are lowercase. For example Day = Thursday.
  • If the first letter of the element is lowercase, then all letters in the output are lowercase. For example, day = thursday.

Format year part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the year part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the year that you need to format.
  • format_string_expression: A string which contains format elements, including the year format element.

These data types include a year part:

  • DATE
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
YYYY Year, 4 or more digits. Input: DATE '2018-01-30'
Output: 2018
Input: DATE '76-01-30'
Output: 0076
Input: DATE '10000-01-30'
Output: 10000
YYY Year, last 3 digits only. Input: DATE '2018-01-30'
Output: 018
Input: DATE '98-01-30'
Output: 098
YY Year, last 2 digits only. Input: DATE '2018-01-30'
Output: 18
Input: DATE '8-01-30'
Output: 08
Y Year, last digit only. Input: DATE '2018-01-30'
Output: 8
RRRR Same behavior as YYYY.
RR Same behavior as YY.

Return type

STRING

Example

SELECT CAST(DATE '2018-01-30' AS STRING FORMAT 'YYYY') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 2018                |
+---------------------+

Format month part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the month part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the month that you need to format.
  • format_string_expression: A string which contains format elements, including the month format element.

These data types include a month part:

  • DATE
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
MM Month, 2 digits. Input: DATE '2018-01-30'
Output: 01
MON Abbreviated, 3-character name of the month. The abbreviated month names for locale en-US are: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC. Case matching is supported. Input: DATE '2018-01-30'
Output: JAN
MONTH Name of the month. Case matching is supported. Input: DATE '2018-01-30'
Output: JANUARY

Return type

STRING

Example

SELECT CAST(DATE '2018-01-30' AS STRING FORMAT 'MONTH') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| JANUARY             |
+---------------------+

Format day part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the day part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the day that you need to format.
  • format_string_expression: A string which contains format elements, including the day format element.

These data types include a day part:

  • DATE
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
DAY Name of the day of the week, localized. Spaces are padded on the right side to make the output size exactly 9. Case matching is supported. Input: DATE '2020-12-31'
Output: THURSDAY
DY Abbreviated, 3-character name of the weekday, localized. The abbreviated weekday names for locale en-US are: MON, TUE, WED, THU, FRI, SAT, SUN. Case matching is supported. Input: DATE '2020-12-31'
Output: THU
D Day of the week (1 to 7), starting with Sunday as 1. Input: DATE '2020-12-31'
Output: 4
DD 2-digit day of the month. Input: DATE '2018-12-02'
Output: 02
DDD 3-digit day of the year. Input: DATE '2018-02-03'
Output: 034

Return type

STRING

Example

SELECT CAST(DATE '2018-02-15' AS STRING FORMAT 'DD') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 15                  |
+---------------------+

Format hour part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the hour part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the hour that you need to format.
  • format_string_expression: A string which contains format elements, including the hour format element.

These data types include a hour part:

  • TIME
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
HH Hour of the day, 12-hour clock, 2 digits. Input: TIME '21:30:00'
Output: 09
HH12 Hour of the day, 12-hour clock. Input: TIME '21:30:00'
Output: 09
HH24 Hour of the day, 24-hour clock, 2 digits. Input: TIME '21:30:00'
Output: 21

Return type

STRING

Examples

SELECT CAST(TIME '21:30:00' AS STRING FORMAT 'HH24') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 21                  |
+---------------------+
SELECT CAST(TIME '21:30:00' AS STRING FORMAT 'HH12') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 09                  |
+---------------------+

Format minute part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the minute part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the minute that you need to format.
  • format_string_expression: A string which contains format elements, including the minute format element.

These data types include a minute part:

  • TIME
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
MI Minute, 2 digits. Input: TIME '01:02:03'
Output: 02

Return type

STRING

Example

SELECT CAST(TIME '21:30:00' AS STRING FORMAT 'MI') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 30                  |
+---------------------+

Format second part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the second part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the second that you need to format.
  • format_string_expression: A string which contains format elements, including the second format element.

These data types include a second part:

  • TIME
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
SS Seconds of the minute, 2 digits. Input: TIME '01:02:03'
Output: 03
SSSSS Seconds of the day, 5 digits. Input: TIME '01:02:03'
Output: 03723
FFn Fractional part of the second, n digits long. Replace n with a value from 1 to 9. For example, FF5. The fractional part of the second is rounded to fit the size of the output. Input for FF1: TIME '01:05:07.16'
Output: 1
Input for FF2: TIME '01:05:07.16'
Output: 16
Input for FF3: TIME '01:05:07.16'
Output: 016

Return type

STRING

Examples

SELECT CAST(TIME '21:30:25.16' AS STRING FORMAT 'SS') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 25                  |
+---------------------+
SELECT CAST(TIME '21:30:25.16' AS STRING FORMAT 'FF2') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| 16                  |
+---------------------+

Format meridian indicator part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the meridian indicator part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the meridian indicator that you need to format.
  • format_string_expression: A string which contains format elements, including the meridian indicator format element.

These data types include a meridian indicator part:

  • TIME
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
A.M. A.M. if the time is less than 12, otherwise P.M. The letter case of the output is determined by the first letter case of the format element. Input for A.M.: TIME '01:02:03'
Output: A.M.
Input for A.M.: TIME '16:02:03'
Output: P.M.
Input for a.m.: TIME '01:02:03'
Output: a.m.
Input for a.M.: TIME '01:02:03'
Output: a.m.
AM AM if the time is less than 12, otherwise PM. The letter case of the output is determined by the first letter case of the format element. Input for AM: TIME '01:02:03'
Output: AM
Input for AM: TIME '16:02:03'
Output: PM
Input for am: TIME '01:02:03'
Output: am
Input for aM: TIME '01:02:03'
Output: am
P.M. Output is the same as A.M. format element.
PM Output is the same as AM format element.

Return type

STRING

Examples

SELECT CAST(TIME '21:30:00' AS STRING FORMAT 'AM') AS date_time_to_string;
SELECT CAST(TIME '21:30:00' AS STRING FORMAT 'PM') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| PM                  |
+---------------------+
SELECT CAST(TIME '01:30:00' AS STRING FORMAT 'AM') AS date_time_to_string;
SELECT CAST(TIME '01:30:00' AS STRING FORMAT 'PM') AS date_time_to_string;

+---------------------+
| date_time_to_string |
+---------------------+
| AM                  |
+---------------------+

Format time zone part as string

CAST(expression AS STRING FORMAT format_string_expression)

Casts a data type that contains the time zone part to a string. Includes format elements, which provide instructions for how to conduct the cast.

  • expression: This expression contains the data type with the time zone that you need to format.
  • format_string_expression: A string which contains format elements, including the time zone format element.

These data types include a time zone part:

  • DATE
  • TIME
  • DATETIME
  • TIMESTAMP

If expression or format_string_expression is NULL the return value is NULL. If format_string_expression is an empty string, the output is an empty string. An error is generated if a value that is not a supported format element appears in format_string_expression or expression does not contain a value specified by a format element.

Format elementReturnsExample
TZH Hour offset for a time zone. This includes the +/- sign and 2-digit hour. Inputstamp: TIMESTAMP '2008-12-25 05:30:00+00' Output: −08
TZM Minute offset for a time zone. This includes only the 2-digit minute. Inputstamp: TIMESTAMP '2008-12-25 05:30:00+00' Output: 00

Return type

STRING

Examples

SELECT CAST(TIMESTAMP '2008-12-25 00:00:00+00:00' AS STRING FORMAT 'TZH') AS date_time_to_string;

-- Results depend upon where this query was executed.
+---------------------+
| date_time_to_string |
+---------------------+
| -08                 |
+---------------------+
SELECT CAST(TIMESTAMP '2008-12-25 00:00:00+00:00' AS STRING FORMAT 'TZH' AT TIME ZONE 'Asia/Kolkata')
AS date_time_to_string;

-- Because the time zone is specified, the result is always the same.
+---------------------+
| date_time_to_string |
+---------------------+
| +05                 |
+---------------------+
SELECT CAST(TIMESTAMP '2008-12-25 00:00:00+00:00' AS STRING FORMAT 'TZM') AS date_time_to_string;

-- Results depend upon where this query was executed.
+---------------------+
| date_time_to_string |
+---------------------+
| 00                  |
+---------------------+
SELECT CAST(TIMESTAMP '2008-12-25 00:00:00+00:00' AS STRING FORMAT 'TZM' AT TIME ZONE 'Asia/Kolkata')
AS date_time_to_string;

-- Because the time zone is specified, the result is always the same.
+---------------------+
| date_time_to_string |
+---------------------+
| 30                  |
+---------------------+

Format literal as string

CAST(expression AS STRING FORMAT format_string_expression)
Format elementReturnsExample
- Output is the same as the input. -
. Output is the same as the input. .
/ Output is the same as the input. /
, Output is the same as the input. ,
' Output is the same as the input. '
; Output is the same as the input. ;
: Output is the same as the input. :
Whitespace Output is the same as the input. Whitespace means the space character, ASCII 32. It does not mean other types of space like tab or new line. Any whitespace character that is not the ASCII 32 character in the format model generates an error.
"text" Output is the value within the double quotes. To preserve a double quote or backslash character, use the \" or \\ escape sequence. Other escape sequences are not supported. Input: "abc"
Output: abc
Input: "a\"b\\c"
Output: a"b\c

Format string as date and time

You can format a string with these date and time parts:

  • Format string as year part
  • Format string as month part
  • Format string as day part
  • Format string as hour part
  • Format string as minute part
  • Format string as second part
  • Format string as meridian indicator part
  • Format string as time zone part
  • Format string as literal part

When formatting a string with date and time parts, you must follow the format model rules.

Format model rules

When casting a string to date and time parts, you must ensure the format model is valid. The format model represents the elements passed into CAST(string_expression AS type FORMAT format_string_expression) as the format_string_expression and is validated according to the following rules:

  • It contains at most one of each of the following parts: meridian indicator, year, month, day, hour.
  • A non-literal, non-whitespace format element cannot appear more than once.
  • If it contains the day of year format element, DDD, then it cannot contain the month.
  • If it contains the 24-hour format element, HH24, then it cannot contain the 12-hour format element or a meridian indicator.
  • If it contains the 12-hour format element, HH12 or HH, then it must also contain a meridian indicator.
  • If it contains a meridian indicator, then it must also contain a 12-hour format element.
  • If it contains the second of the day format element, SSSSS, then it cannot contain any of the following: hour, minute, second, or meridian indicator.
  • It cannot contain a format element such that the value it sets does not exist in the target type. For example, an hour format element such as HH24 cannot appear in a string you are casting as a DATE.

Format string as year part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted year to a data type that contains the year part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the year that you need to format.
  • type: The data type to which you are casting. Must include the year part.
  • format_string_expression: A string which contains format elements, including the year format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a year part:

  • DATE
  • DATETIME
  • TIMESTAMP

If the YEAR part is missing from string_expression and the return type includes this part, YEAR is set to the current year.

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
YYYY If it is delimited, matches 1 to 5 digits. If it is not delimited, matches 4 digits. Sets the year part to the matched number. Input for MM-DD-YYYY: '03-12-2018'
Output as DATE: 2018-12-03
Input for YYYY-MMDD: '10000-1203'
Output as DATE: 10000-12-03
Input for YYYY: '18'
Output as DATE: 2018-03-01 (Assume current date is March 23, 2021)
YYY Matches 3 digits. Sets the last 3 digits of the year part to the matched number. Input for YYY-MM-DD: '018-12-03'
Output as DATE: 2018-12-03
Input for YYY-MM-DD: '038-12-03'
Output as DATE: 2038-12-03
YY Matches 2 digits. Sets the last 2 digits of the year part to the matched number. Input for YY-MM-DD: '18-12-03'
Output as DATE: 2018-12-03
Input for YY-MM-DD: '38-12-03'
Output as DATE: 2038-12-03
Y Matches 1 digit. Sets the last digit of the year part to the matched number. Input for Y-MM-DD: '8-12-03'
Output as DATE: 2008-12-03
Y,YYY Matches the pattern of 1 to 2 digits, comma, then exactly 3 digits. Sets the year part to the matched number. Input for Y,YYY-MM-DD: '2,018-12-03'
Output as DATE: 2008-12-03
RRRR Same behavior as YYYY.
RR

Matches 2 digits.

If the 2 digits entered are between 00 and 49 and the last 2 digits of the current year are between 00 and 49, the returned year has the same first 2 digits as the current year. If the last 2 digits of the current year are between 50 and 99, the first 2 digits of the returned year is 1 greater than the first 2 digits of the current year.

If the 2 digits entered are between 50 and 99 and the last 2 digits of the current year are between 00 and 49, the first 2 digits of the returned year are 1 less than the first 2 digits of the current year. If the last 2 digits of the current year are between 50 and 99, the returned year has the same first 2 digits as the current year.

Input for RR-MM-DD: '18-12-03'
Output as DATE: 2018-12-03 (executed in the year 2021) Output as DATE: 2118-12-03 (executed in the year 2050)
Input for RR-MM-DD: '50-12-03'
Output as DATE: 2050-12-03 (executed in the year 2021) Output as DATE: 2050-12-03 (executed in the year 2050)

Return type

The data type to which the string was cast. This can be:

  • DATE
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('18-12-03' AS DATE FORMAT 'YY-MM-DD') AS string_to_date

+----------------+
| string_to_date |
+----------------+
| 2018-02-03     |
+----------------+

Format string as month part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted month to a data type that contains the month part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the month that you need to format.
  • type: The data type to which you are casting. Must include the month part.
  • format_string_expression: A string which contains format elements, including the month format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a month part:

  • DATE
  • DATETIME
  • TIMESTAMP

If the MONTH part is missing from string_expression and the return type includes this part, MONTH is set to the current month.

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
MM Matches 2 digits. Sets the month part to the matched number. Input for MM-DD-YYYY: '03-12-2018'
Output as DATE: 2018-12-03
MON Matches 3 letters. Sets the month part to the matched string interpreted as the abbreviated name of the month. Input for MON DD, YYYY: 'DEC 03, 2018'
Output as DATE: 2018-12-03
MONTH Matches 9 letters. Sets the month part to the matched string interpreted as the name of the month. Input for MONTH DD, YYYY: 'DECEMBER 03, 2018'
Output as DATE: 2018-12-03

Return type

The data type to which the string was cast. This can be:

  • DATE
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('DEC 03, 2018' AS DATE FORMAT 'MON DD, YYYY') AS string_to_date

+----------------+
| string_to_date |
+----------------+
| 2018-12-03     |
+----------------+

Format string as day part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted day to a data type that contains the day part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the day that you need to format.
  • type: The data type to which you are casting. Must include the day part.
  • format_string_expression: A string which contains format elements, including the day format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a day part:

  • DATE
  • DATETIME
  • TIMESTAMP

If the DAY part is missing from string_expression and the return type includes this part, DAY is set to 1.

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
DD Matches 2 digits. Sets the day part to the matched number. Input for MONTH DD, YYYY: 'DECEMBER 03, 2018'
Output as DATE: 2018-12-03

Return type

The data type to which the string was cast. This can be:

  • DATE
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('DECEMBER 03, 2018' AS DATE FORMAT 'MONTH DD, YYYY') AS string_to_date

+----------------+
| string_to_date |
+----------------+
| 2018-12-03     |
+----------------+

Format string as hour part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted hour to a data type that contains the hour part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the hour that you need to format.
  • type: The data type to which you are casting. Must include the hour part.
  • format_string_expression: A string which contains format elements, including the hour format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a hour part:

  • TIME
  • DATETIME
  • TIMESTAMP

If the HOUR part is missing from string_expression and the return type includes this part, HOUR is set to 0.

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
HH Matches 2 digits. If the matched number n is 12, sets temp = 0; otherwise, sets temp = n. If the matched value of the A.M./P.M. format element is P.M., sets temp = n + 12. Sets the hour part to temp. A meridian indicator must be present in the format model, when HH is present. Input for HH:MI P.M.: '03:30 P.M.'
Output as TIME: 15:30:00
HH12 Same behavior as HH.
HH24 Matches 2 digits. Sets the hour part to the matched number. Input for HH24:MI: '15:30'
Output as TIME: 15:30:00

Return type

The data type to which the string was cast. This can be:

  • TIME
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('15:30' AS TIME FORMAT 'HH24:MI') AS string_to_date_time

+---------------------+
| string_to_date_time |
+---------------------+
| 15:30:00            |
+---------------------+

Format string as minute part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted minute to a data type that contains the minute part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the minute that you need to format.
  • type: The data type to which you are casting. Must include the minute part.
  • format_string_expression: A string which contains format elements, including the minute format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a minute part:

  • TIME
  • DATETIME
  • TIMESTAMP

If the MINUTE part is missing from string_expression and the return type includes this part, MINUTE is set to 0.

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
MI Matches 2 digits. Sets the minute part to the matched number. Input for HH:MI P.M.: '03:30 P.M.'
Output as TIME: 15:30:00

Return type

The data type to which the string was cast. This can be:

  • TIME
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('03:30 P.M.' AS TIME FORMAT 'HH:MI P.M.') AS string_to_date_time

+---------------------+
| string_to_date_time |
+---------------------+
| 15:30:00            |
+---------------------+

Format string as second part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted second to a data type that contains the second part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the second that you need to format.
  • type: The data type to which you are casting. Must include the second part.
  • format_string_expression: A string which contains format elements, including the second format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a second part:

  • TIME
  • DATETIME
  • TIMESTAMP

If the SECOND part is missing from string_expression and the return type includes this part, SECOND is set to 0.

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
SS Matches 2 digits. Sets the second part to the matched number. Input for HH:MI:SS P.M.: '03:30:02 P.M.'
Output as TIME: 15:30:02
SSSSS Matches 5 digits. Sets the hour, minute and second parts by interpreting the matched number as the number of seconds past midnight. Input for SSSSS: '03723'
Output as TIME: 01:02:03
FFn Matches n digits, where n is the number following FF in the format element. Sets the fractional part of the second part to the matched number. Input for HH24:MI:SS.FF1: '01:05:07.16'
Output as TIME: 01:05:07.2
Input for HH24:MI:SS.FF2: '01:05:07.16'
Output as TIME: 01:05:07.16
Input for HH24:MI:SS.FF3: 'FF3: 01:05:07.16'
Output as TIME: 01:05:07.160

Return type

The data type to which the string was cast. This can be:

  • TIME
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('01:05:07.16' AS TIME FORMAT 'HH24:MI:SS.FF1') AS string_to_date_time

+---------------------+
| string_to_date_time |
+---------------------+
| 01:05:07.2          |
+---------------------+

Format string as meridian indicator part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted meridian indicator to a data type that contains the meridian indicator part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the meridian indicator that you need to format.
  • type: The data type to which you are casting. Must include the meridian indicator part.
  • format_string_expression: A string which contains format elements, including the meridian indicator format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a meridian indicator part:

  • TIME
  • DATETIME
  • TIMESTAMP

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
A.M. or P.M. Matches using the regular expression '(A|P)\.M\.'. Input for HH:MI A.M.: '03:30 A.M.'
Output as TIME: 03:30:00
Input for HH:MI P.M.: '03:30 P.M.'
Output as TIME: 15:30:00
Input for HH:MI P.M.: '03:30 A.M.'
Output as TIME: 03:30:00
Input for HH:MI A.M.: '03:30 P.M.'
Output as TIME: 15:30:00
Input for HH:MI a.m.: '03:30 a.m.'
Output as TIME: 03:30:00

Return type

The data type to which the string was cast. This can be:

  • TIME
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('03:30 P.M.' AS TIME FORMAT 'HH:MI A.M.') AS string_to_date_time

+---------------------+
| string_to_date_time |
+---------------------+
| 15:30:00            |
+---------------------+

Format string as time zone part

CAST(string_expression AS type FORMAT format_string_expression)

Casts a string-formatted time zone to a data type that contains the time zone part. Includes format elements, which provide instructions for how to conduct the cast.

  • string_expression: This expression contains the string with the time zone that you need to format.
  • type: The data type to which you are casting. Must include the time zone part.
  • format_string_expression: A string which contains format elements, including the time zone format element. The formats elements in this string are defined collectively as the format model, which must follow these rules.

These data types include a time zone part:

  • DATE
  • TIME
  • DATETIME
  • TIMESTAMP

An error is generated if a value that is not a supported format element appears in format_string_expression or string_expression does not contain a value specified by a format element.

Format elementReturnsExample
TZH Matches using the regular expression '(\+|\-| )[0-9]{2}'. Sets the time zone and hour parts to the matched sign and number. Sets the time zone sign to be the first letter of the matched string. The number 2 means matching up to 2 digits for non-exact matching, and exactly 2 digits for exact matching. Input for YYYY-MM-DD HH:MI:SSTZH: '2008-12-25 05:30:00-08'
Output as TIMESTAMP: 2008-12-25 05:30:00-08
TZM Matches 2 digits. Let n be the matched number. If the time zone sign is the minus sign, sets the time zone minute part to -n. Otherwise, sets the time zone minute part to n. Input for YYYY-MM-DD HH:MI:SSTZH: '2008-12-25 05:30:00+05.30'
Output as TIMESTAMP: 2008-12-25 05:30:00+05.30

Return type

The data type to which the string was cast. This can be:

  • DATE
  • TIME
  • DATETIME
  • TIMESTAMP

Examples

SELECT CAST('2020.06.03 00:00:53+00' AS TIMESTAMP FORMAT 'YYYY.MM.DD HH:MI:SSTZH') AS string_to_date_time

+-----------------------------+
| as_timestamp                |
+-----------------------------+
| 2020-06-03 00:00:53.110 UTC |
+-----------------------------+

Format string as literal

CAST(string_expression AS data_type FORMAT format_string_expression)
Format elementReturnsExample
- Output is the same as the input.
. Output is the same as the input. .
/ Output is the same as the input. /
, Output is the same as the input. ,
' Output is the same as the input. '
; Output is the same as the input. ;
: Output is the same as the input. :
Whitespace A consecutive sequence of one or more spaces in the format model is matched with one or more consecutive Unicode whitespace characters in the input. Space means the ASCII 32 space character. It does not mean the general whitespace such as a tab or new line. Any whitespace character that is not the ASCII 32 character in the format model generates an error.
"text" Output generated by the format element in formatting, using this regular expression, with s representing the string input: regex.escape(s). Input: "abc"
Output: abc
Input: "a\"b\\c"
Output: a"b\c

Format numeric type as string

CAST(numeric_expression AS STRING FORMAT format_string_expression)

You can cast a numeric type to a string by combining the following format elements:

  • Digits
  • Decimal point
  • Sign
  • Currency symbol
  • Group separator
  • Other format elements

Except for the exponent format element (EEEE), all of the format elements generate a fixed number of characters in the output, and the output is aligned by the decimal point. The first character outputs a - for negative numbers; otherwise a space. To suppress blank characters and trailing zeroes, use the FM flag.

Return type

STRING

Example

SELECT input, CAST(input AS STRING FORMAT '$999,999.999') AS output
FROM UNNEST([1.2, 12.3, 123.456, 1234.56, -12345.678, 1234567.89]) AS input

+------------+---------------+
|   input    |    output     |
+------------+---------------+
|        1.2 |        $1.200 |
|       12.3 |       $12.300 |
|    123.456 |      $123.456 |
|    1234.56 |    $1,234.560 |
| -12345.678 |  -$12,345.678 |
| 1234567.89 |  $###,###.### |
+------------+---------------+

Format digits as string

The following format elements output digits. If there aren't enough digit format elements to represent the input, all digit format elements are replaced with # in the output.

Format elementReturnsExample
0 A decimal digit. Leading and trailing zeros are included. Input: 12
Format: '000'
Output: ' 012'
Input: 12
Format: '000.000'
Output: ' 012.000'
Input: -12
Format: '000.000'
Output: '-012.000'
9 A decimal digit. Leading zeros are replaced with spaces. Trailing zeros are included. Input: 12
Format: '999'
Output: '  12'
Input: 12
Format: '999.999'
Output: '  12.000'
X or x

A hexadecimal digit. Cannot appear with other format elements except 0, FM, and the sign format elements. The maximum number of hexadecimal digits in the format string is 16.

X generates uppercase letters and x generates lowercase letters.

When 0 is combined with the hexadecimal format element, the letter generated by 0 matches the case of the next X or x element. If there is no subsequent X or x, then 0 generates an uppercase letter.

Input: 43981
Format: 'XXXX'
Output: ' ABCD'
Input: 43981
Format: 'xxxx'
Output: ' abcd'
Input: 43981
Format: '0X0x'
Output: ' ABcd'
Input: 43981
Format: '0000000X'
Output: ' 0000ABCD'

Return type

STRING

Example

SELECT
  CAST(12 AS STRING FORMAT '999') as a,
  CAST(-12 AS STRING FORMAT '999') as b;

+------+------+
|  a   |  b   |
+------+------+
|   12 |  -12 |
+------+------+

Format decimal point as string

The following format elements output a decimal point. These format elements are mutually exclusive. At most one can appear in the format string.

Format elementReturnsExample
. (period) Decimal point. Input: 123.58
Format: '999.999'
Output: ' 123.580'
D The decimal point of the current locale. Input: 123.58
Format: '999D999'
Output: ' 123.580'

Return type

STRING

Example

SELECT CAST(12.5 AS STRING FORMAT '99.99') as a;

+--------+
|   a    |
+--------+
|  12.50 |
+--------+

Format sign as string

The following format elements output the sign (+/-). These format elements are mutually exclusive. At most one can appear in the format string.

If there are no sign format elements, one extra space is reserved for the sign. For example, if the input is 12 and the format string is '99', then the output is ' 12', with a length of three characters.

The sign appears before the number. If the format model includes a currency symbol element, then the sign appears before the currency symbol.

Format elementReturnsExample
S Explicit sign. Outputs + for positive numbers and - for negative numbers. The position in the output is anchored to the number. NaN and 0 will not be signed. Input: -12
Format: 'S9999'
Output: '  -12'
Input: -12
Format: '9999S'
Output: '  12-'
MI Explicit sign. Outputs a space for positive numbers and - for negative numbers. This element can only appear in the last position. Input: 12
Format: '9999MI'
Output: '  12 '
Input: -12
Format: '9999MI'
Output: '  12-'
PR For negative numbers, the value is enclosed in angle brackets. For positive numbers, the value is returned with a leading and trailing space. This element can only appear in the last position. Input: 12
Format: '9999PR'
Output: '   12 '
Input: -12
Format: '9999PR'
Output: '  <12>'

Return type

STRING

Example

SELECT
  CAST(12 AS STRING FORMAT 'S99') as a,
  CAST(-12 AS STRING FORMAT 'S99') as b;

+-----+-----+
|  a  |  b  |
+-----+-----+
| +12 | -12 |
+-----+-----+

Format currency symbol as string

The following format elements output a currency symbol. These format elements are mutually exclusive. At most one can appear in the format string. In the output, the currency symbol appears before the first digit or decimal point.

Format elementReturnsExample
$ Dollar sign ($). Input: -12
Format: '$999'
Output: ' -$12'
C or c The ISO-4217 currency code of the current locale. Input: -12
Format: 'C999'
Output: ' -USD12'
Input: -12
Format: 'c999'
Output: ' -usd12'
L The currency symbol of the current locale. Input: -12
Format: 'L999'
Output: ' -$12'

Return type

STRING

Example

SELECT
  CAST(12 AS STRING FORMAT '$99') as a,
  CAST(-12 AS STRING FORMAT '$99') as b;

+------+------+
|  a   |  b   |
+------+------+
|  $12 | -$12 |
+------+------+

Format group separator as string

The following format elements output a group separator.

Format elementReturnsExample
, (comma) Group separator. Input: 12345
Format: '999,999'
Output: '  12,345'
G The group separator point of the current locale. Input: 12345
Format: '999G999'
Output: '  12,345'

Return type

STRING

Example

SELECT CAST(1234 AS STRING FORMAT '999,999') as a;

+----------+
|    a     |
+----------+
|    1,234 |
+----------+

Other numeric format elements

Format elementReturnsExample
B Outputs spaces when the integer part is zero. If the integer part of the number is 0, then the following format elements generate spaces in the output: digits (9, X, 0), decimal point, group separator, currency, sign, and exponent. Input: 0.23
Format: 'B99.999S'
Output: '       '
Input: 1.23
Format: 'B99.999S'
Output: ' 1.230+'
EEEE Outputs the exponent part of the value in scientific notation. If the exponent value is between -99 and 99, the output is four characters. Otherwise, the minimum number of digits is used in the output. Input: 20
Format: '9.99EEEE'
Output: ' 2.0E+01'
Input: 299792458
Format: 'S9.999EEEE'
Output: '+2.998E+08'
FM Removes all spaces and trailing zeroes from the output. You can use this element to suppress spaces and trailing zeroes that are generated by other format elements. Input: 12.5
Format: '999999.000FM'
Output: '12.5'
RN Returns the value as Roman numerals, rounded to the nearest integer. The input must be between 1 and 3999. The output is padded with spaces to the left to a length of 15. This element cannot be used with other format elements except FM. Input: 2021
Format: 'RN'
Output: '          MMXXI'
V The input value is multiplied by 10^n, where n is the number of 9s after the V. This element cannot be used with a decimal point or exponent format element. Input: 23.5
Format: 'S000V00'
Output: '+02350'

Return type

STRING

Example

SELECT CAST(-123456 AS STRING FORMAT '9.999EEEE') as a;"

+------------+
|     a      |
+------------+
| -1.235E+05 |
+------------+

About BASE encoding

BASE encoding translates binary data in string format into a radix-X representation.

If X is 2, 8, or 16, Arabic numerals 0–9 and the Latin letters a–z are used in the encoded string. So for example, BASE16/Hexadecimal encoding results contain 0~9 and a~f.

If X is 32 or 64, the default character tables are defined in rfc 4648. When you decode a BASE string where X is 2, 8, or 16, the Latin letters in the input string are case-insensitive. For example, both "3a" and "3A" are valid input strings for BASE16/Hexadecimal decoding, and will output the same result.

Mathematical functions

All mathematical functions have the following behaviors:

  • They return NULL if any of the input parameters is NULL.
  • They return NaN if any of the arguments is NaN.

ABS

ABS(X)

Description

Computes absolute value. Returns an error if the argument is an integer and the output value cannot be represented as the same type; this happens only for the largest negative input value, which has no positive representation.

XABS(X)
25 25
-25 25
+inf +inf
-inf +inf

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTINT64 NUMERIC BIGNUMERIC FLOAT64

SIGN

SIGN(X)

Description

Returns -1, 0, or +1 for negative, zero and positive arguments respectively. For floating point arguments, this function does not distinguish between positive and negative zero.

XSIGN(X)
25 +1
0 0
-25 -1
NaN NaN

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTINT64 NUMERIC BIGNUMERIC FLOAT64

IS_INF

IS_INF(X)

Description

Returns TRUE if the value is positive or negative infinity.

XIS_INF(X)
+inf TRUE
-inf TRUE
25 FALSE

IS_NAN

IS_NAN(X)

Description

Returns TRUE if the value is a NaN value.

XIS_NAN(X)
NaN TRUE
25 FALSE

IEEE_DIVIDE

IEEE_DIVIDE(X, Y)

Description

Divides X by Y; this function never fails. Returns FLOAT64. Unlike the division operator (/), this function does not generate errors for division by zero or overflow.

XYIEEE_DIVIDE(X, Y)
20.0 4.0 5.0
0.0 25.0 0.0
25.0 0.0 +inf
-25.0 0.0 -inf
0.0 0.0 NaN
0.0 NaN NaN
NaN 0.0 NaN
+inf +inf NaN
-inf -inf NaN

RAND

RAND()

Description

Generates a pseudo-random value of type FLOAT64 in the range of [0, 1), inclusive of 0 and exclusive of 1.

SQRT

SQRT(X)

Description

Computes the square root of X. Generates an error if X is less than 0.

XSQRT(X)
25.0 5.0
+inf +inf
X < 0 Error

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

POW

POW(X, Y)

Description

Returns the value of X raised to the power of Y. If the result underflows and is not representable, then the function returns a value of zero.

XYPOW(X, Y)
2.0 3.0 8.0
1.0 Any value including NaN 1.0
Any value including NaN 0 1.0
-1.0 +inf 1.0
-1.0 -inf 1.0
ABS(X) < 1 -inf +inf
ABS(X) > 1 -inf 0.0
ABS(X) < 1 +inf 0.0
ABS(X) > 1 +inf +inf
-inf Y < 0 0.0
-inf Y > 0 -inf if Y is an odd integer, +inf otherwise
+inf Y < 0 0
+inf Y > 0 +inf
Finite value < 0 Non-integer Error
0 Finite value < 0 Error

Return Data Type

The return data type is determined by the argument types with the following table.

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64FLOAT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

POWER

POWER(X, Y)

Description

Synonym of POW(X, Y).

EXP

EXP(X)

Description

Computes e to the power of X, also called the natural exponential function. If the result underflows, this function returns a zero. Generates an error if the result overflows.

XEXP(X)
0.0 1.0
+inf +inf
-inf 0.0

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

LN

LN(X)

Description

Computes the natural logarithm of X. Generates an error if X is less than or equal to zero.

XLN(X)
1.0 0.0
+inf +inf
X < 0 Error

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

LOG

LOG(X [, Y])

Description

If only X is present, LOG is a synonym of LN. If Y is also present, LOG computes the logarithm of X to base Y.

XYLOG(X, Y)
100.0 10.0 2.0
-inf Any value NaN
Any value +inf NaN
+inf 0.0 < Y < 1.0 -inf
+inf Y > 1.0 +inf
X <= 0 Any value Error
Any value Y <= 0 Error
Any value 1.0 Error

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64FLOAT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

LOG10

LOG10(X)

Description

Similar to LOG, but computes logarithm to base 10.

XLOG10(X)
100.0 2.0
-inf NaN
+inf NaN
X <= 0 Error

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

GREATEST

GREATEST(X1,...,XN)

Description

Returns the greatest value among X1,...,XN. If any argument is NULL, returns NULL. Otherwise, in the case of floating-point arguments, if any argument is NaN, returns NaN. In all other cases, returns the value among X1,...,XN that has the greatest value according to the ordering used by the ORDER BY clause. The arguments X1, ..., XN must be coercible to a common supertype, and the supertype must support ordering.

X1,...,XNGREATEST(X1,...,XN)
3,5,1 5

This function supports specifying collation.

Return Data Types

Data type of the input values.

LEAST

LEAST(X1,...,XN)

Description

Returns the least value among X1,...,XN. If any argument is NULL, returns NULL. Otherwise, in the case of floating-point arguments, if any argument is NaN, returns NaN. In all other cases, returns the value among X1,...,XN that has the least value according to the ordering used by the ORDER BY clause. The arguments X1, ..., XN must be coercible to a common supertype, and the supertype must support ordering.

X1,...,XNLEAST(X1,...,XN)
3,5,1 1

This function supports specifying collation.

Return Data Types

Data type of the input values.

DIV

DIV(X, Y)

Description

Returns the result of integer division of X by Y. Division by zero returns an error. Division by -1 may overflow.

XYDIV(X, Y)
20 4 5
12 -7 -1
20 3 6
0 20 0
20 0 Error

Return Data Type

The return data type is determined by the argument types with the following table.

INPUTINT64NUMERICBIGNUMERIC
INT64INT64 NUMERIC BIGNUMERIC
NUMERICNUMERIC NUMERIC BIGNUMERIC
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC

SAFE_DIVIDE

SAFE_DIVIDE(X, Y)

Description

Equivalent to the division operator (X / Y), but returns NULL if an error occurs, such as a division by zero error.

XYSAFE_DIVIDE(X, Y)
20 4 5
0 20 0
20 0 NULL

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64FLOAT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

SAFE_MULTIPLY

SAFE_MULTIPLY(X, Y)

Description

Equivalent to the multiplication operator (*), but returns NULL if overflow occurs.

XYSAFE_MULTIPLY(X, Y)
20 4 80

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64INT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

SAFE_NEGATE

SAFE_NEGATE(X)

Description

Equivalent to the unary minus operator (-), but returns NULL if overflow occurs.

XSAFE_NEGATE(X)
+1 -1
-1 +1
0 0

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTINT64 NUMERIC BIGNUMERIC FLOAT64

SAFE_ADD

SAFE_ADD(X, Y)

Description

Equivalent to the addition operator (+), but returns NULL if overflow occurs.

XYSAFE_ADD(X, Y)
5 4 9

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64INT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

SAFE_SUBTRACT

SAFE_SUBTRACT(X, Y)

Description

Returns the result of Y subtracted from X. Equivalent to the subtraction operator (-), but returns NULL if overflow occurs.

XYSAFE_SUBTRACT(X, Y)
5 4 1

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
INT64INT64 NUMERIC BIGNUMERIC FLOAT64
NUMERICNUMERIC NUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64 FLOAT64

MOD

MOD(X, Y)

Description

Modulo function: returns the remainder of the division of X by Y. Returned value has the same sign as X. An error is generated if Y is 0.

XYMOD(X, Y)
25 12 1
25 0 Error

Return Data Type

The return data type is determined by the argument types with the following table.

INPUTINT64NUMERICBIGNUMERIC
INT64INT64 NUMERIC BIGNUMERIC
NUMERICNUMERIC NUMERIC BIGNUMERIC
BIGNUMERICBIGNUMERIC BIGNUMERIC BIGNUMERIC

ROUND

ROUND(X [, N] [, rounding_mode])

Description

If only X is present, rounds X to the nearest integer. If N is present, rounds X to N decimal places after the decimal point. If N is negative, rounds off digits to the left of the decimal point. Rounds halfway cases away from zero. Generates an error if overflow occurs.

If X is a NUMERIC or BIGNUMERIC type, then you can explicitly set rounding_mode to one of the following:

  • "ROUND_HALF_AWAY_FROM_ZERO": (Default) Rounds halfway cases away from zero.
  • "ROUND_HALF_EVEN": Rounds halfway cases towards the nearest even digit.

If you set the rounding_mode and X is not a NUMERIC or BIGNUMERIC type, then the function generates an error.

ExpressionReturn Value
ROUND(2.0) 2.0
ROUND(2.3) 2.0
ROUND(2.8) 3.0
ROUND(2.5) 3.0
ROUND(-2.3) -2.0
ROUND(-2.8) -3.0
ROUND(-2.5) -3.0
ROUND(0) 0
ROUND(+inf) +inf
ROUND(-inf) -inf
ROUND(NaN) NaN
ROUND(123.7, -1) 120.0
ROUND(1.235, 2) 1.24
ROUND(NUMERIC "2.25", 1, "ROUND_HALF_EVEN") 2.2
ROUND(NUMERIC "2.35", 1, "ROUND_HALF_EVEN") 2.4
ROUND(NUMERIC "2.251", 1, "ROUND_HALF_EVEN") 2.3
ROUND(NUMERIC "-2.5", 0, "ROUND_HALF_EVEN") -2
ROUND(NUMERIC "2.5", 0, "ROUND_HALF_AWAY_FROM_ZERO") 3
ROUND(NUMERIC "-2.5", 0, "ROUND_HALF_AWAY_FROM_ZERO") -3

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

TRUNC

TRUNC(X [, N])

Description

If only X is present, TRUNC rounds X to the nearest integer whose absolute value is not greater than the absolute value of X. If N is also present, TRUNC behaves like ROUND(X, N), but always rounds towards zero and never overflows.

XTRUNC(X)
2.0 2.0
2.3 2.0
2.8 2.0
2.5 2.0
-2.3 -2.0
-2.8 -2.0
-2.5 -2.0
0 0
+inf +inf
-inf -inf
NaN NaN

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

CEIL

CEIL(X)

Description

Returns the smallest integral value that is not less than X.

XCEIL(X)
2.0 2.0
2.3 3.0
2.8 3.0
2.5 3.0
-2.3 -2.0
-2.8 -2.0
-2.5 -2.0
0 0
+inf +inf
-inf -inf
NaN NaN

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

CEILING

CEILING(X)

Description

Synonym of CEIL(X)

FLOOR

FLOOR(X)

Description

Returns the largest integral value that is not greater than X.

XFLOOR(X)
2.0 2.0
2.3 2.0
2.8 2.0
2.5 2.0
-2.3 -3.0
-2.8 -3.0
-2.5 -3.0
0 0
+inf +inf
-inf -inf
NaN NaN

Return Data Type

INPUTINT64NUMERICBIGNUMERICFLOAT64
OUTPUTFLOAT64 NUMERIC BIGNUMERIC FLOAT64

COS

COS(X)

Description

Computes the cosine of X where X is specified in radians. Never fails.

XCOS(X)
+inf NaN
-inf NaN
NaN NaN

COSH

COSH(X)

Description

Computes the hyperbolic cosine of X where X is specified in radians. Generates an error if overflow occurs.

XCOSH(X)
+inf +inf
-inf +inf
NaN NaN

ACOS

ACOS(X)

Description

Computes the principal value of the inverse cosine of X. The return value is in the range [0,π]. Generates an error if X is a value outside of the range [-1, 1].

XACOS(X)
+inf NaN
-inf NaN
NaN NaN
X < -1 Error
X > 1 Error

ACOSH

ACOSH(X)

Description

Computes the inverse hyperbolic cosine of X. Generates an error if X is a value less than 1.

XACOSH(X)
+inf +inf
-inf NaN
NaN NaN
X < 1 Error

COT

COT(X)

Description

Computes the cotangent for the angle of X, where X is specified in radians. X can be any data type that coerces to FLOAT64. Supports the SAFE. prefix.

XCOT(X)
+inf NaN
-inf NaN
NaN NaN
0 Error
NULL NULL

Return Data Type

FLOAT64

Example

SELECT COT(1) AS a, SAFE.COT(0) AS b;

+---------------------+------+
| a                   | b    |
+---------------------+------+
| 0.64209261593433065 | NULL |
+---------------------+------+

COTH

COTH(X)

Description

Computes the hyperbolic cotangent for the angle of X, where X is specified in radians. X can be any data type that coerces to FLOAT64. Supports the SAFE. prefix.

XCOTH(X)
+inf 1
-inf -1
NaN NaN
0 Error
NULL NULL

Return Data Type

FLOAT64

Example

SELECT COTH(1) AS a, SAFE.COTH(0) AS b;

+----------------+------+
| a              | b    |
+----------------+------+
| 1.313035285499 | NULL |
+----------------+------+

CSC

CSC(X)

Description

Computes the cosecant of the input angle, which is in radians. X can be any data type that coerces to FLOAT64. Supports the SAFE. prefix.

XCSC(X)
+inf NaN
-inf NaN
NaN NaN
0 Error
NULL NULL

Return Data Type

FLOAT64

Example

SELECT CSC(100) AS a, CSC(-1) AS b, SAFE.CSC(0) AS c;

+----------------+-----------------+------+
| a              | b               | c    |
+----------------+-----------------+------+
| -1.97485753142 | -1.188395105778 | NULL |
+----------------+-----------------+------+

CSCH

CSCH(X)

Description

Computes the hyperbolic cosecant of the input angle, which is in radians. X can be any data type that coerces to FLOAT64. Supports the SAFE. prefix.

XCSCH(X)
+inf 0
-inf 0
NaN NaN
0 Error
NULL NULL

Return Data Type

FLOAT64

Example

SELECT CSCH(0.5) AS a, CSCH(-2) AS b, SAFE.CSCH(0) AS c;

+----------------+----------------+------+
| a              | b              | c    |
+----------------+----------------+------+
| 1.919034751334 | -0.27572056477 | NULL |
+----------------+----------------+------+

SEC

SEC(X)

Description

Computes the secant for the angle of X, where X is specified in radians. X can be any data type that coerces to FLOAT64.

XSEC(X)
+inf NaN
-inf NaN
NaN NaN
NULL NULL

Return Data Type

FLOAT64

Example

SELECT SEC(100) AS a, SEC(-1) AS b;

+----------------+---------------+
| a              | b             |
+----------------+---------------+
| 1.159663822905 | 1.85081571768 |
+----------------+---------------+

SECH

SECH(X)

Description

Computes the hyperbolic secant for the angle of X, where X is specified in radians. X can be any data type that coerces to FLOAT64. Never produces an error.

XSECH(X)
+inf 0
-inf 0
NaN NaN
NULL NULL

Return Data Type

FLOAT64

Example

SELECT SECH(0.5) AS a, SECH(-2) AS b, SECH(100) AS c;

+----------------+----------------+---------------------+
| a              | b              | c                   |
+----------------+----------------+---------------------+
| 0.88681888397  | 0.265802228834 | 7.4401519520417E-44 |
+----------------+----------------+---------------------+

SIN

SIN(X)

Description

Computes the sine of X where X is specified in radians. Never fails.

XSIN(X)
+inf NaN
-inf NaN
NaN NaN

SINH

SINH(X)

Description

Computes the hyperbolic sine of X where X is specified in radians. Generates an error if overflow occurs.

XSINH(X)
+inf +inf
-inf -inf
NaN NaN

ASIN

ASIN(X)

Description

Computes the principal value of the inverse sine of X. The return value is in the range [-π/2,π/2]. Generates an error if X is outside of the range [-1, 1].

XASIN(X)
+inf NaN
-inf NaN
NaN NaN
X < -1 Error
X > 1 Error

ASINH

ASINH(X)

Description

Computes the inverse hyperbolic sine of X. Does not fail.

XASINH(X)
+inf +inf
-inf -inf
NaN NaN

TAN

TAN(X)

Description

Computes the tangent of X where X is specified in radians. Generates an error if overflow occurs.

XTAN(X)
+inf NaN
-inf NaN
NaN NaN

TANH

TANH(X)

Description

Computes the hyperbolic tangent of X where X is specified in radians. Does not fail.

XTANH(X)
+inf 1.0
-inf -1.0
NaN NaN

ATAN

ATAN(X)

Description

Computes the principal value of the inverse tangent of X. The return value is in the range [-π/2,π/2]. Does not fail.

XATAN(X)
+inf π/2
-inf -π/2
NaN NaN

ATANH

ATANH(X)

Description

Computes the inverse hyperbolic tangent of X. Generates an error if X is outside of the range [-1, 1].

XATANH(X)
+inf NaN
-inf NaN
NaN NaN
X < -1 Error
X > 1 Error

ATAN2

ATAN2(X, Y)

Description

Calculates the principal value of the inverse tangent of X/Y using the signs of the two arguments to determine the quadrant. The return value is in the range [-π,π].

XYATAN2(X, Y)
NaN Any value NaN
Any value NaN NaN
0.0 0.0 0.0
Positive Finite value -inf π
Negative Finite value -inf
Finite value +inf 0.0
+inf Finite value π/2
-inf Finite value -π/2
+inf -inf ¾π
-inf -inf -¾π
+inf +inf π/4
-inf +inf -π/4

CBRT

CBRT(X)

Description

Computes the cube root of X. X can be any data type that coerces to FLOAT64. Supports the SAFE. prefix.

XCBRT(X)
+inf inf
-inf -inf
NaN NaN
0 0
NULL NULL

Return Data Type

FLOAT64

Example

SELECT CBRT(27) AS cube_root;

+--------------------+
| cube_root          |
+--------------------+
| 3.0000000000000004 |
+--------------------+

RANGE_BUCKET

RANGE_BUCKET(point, boundaries_array)

Description

RANGE_BUCKET scans through a sorted array and returns the 0-based position of the point's upper bound. This can be useful if you need to group your data to build partitions, histograms, business-defined rules, and more.

RANGE_BUCKET follows these rules:

  • If the point exists in the array, returns the index of the next larger value.

    RANGE_BUCKET(20, [0, 10, 20, 30, 40]) -- 3 is return value
    RANGE_BUCKET(20, [0, 10, 20, 20, 40, 40]) -- 4 is return value
    
  • If the point does not exist in the array, but it falls between two values, returns the index of the larger value.

    RANGE_BUCKET(25, [0, 10, 20, 30, 40]) -- 3 is return value
    
  • If the point is smaller than the first value in the array, returns 0.

    RANGE_BUCKET(-10, [5, 10, 20, 30, 40]) -- 0 is return value
    
  • If the point is greater than or equal to the last value in the array, returns the length of the array.

    RANGE_BUCKET(80, [0, 10, 20, 30, 40]) -- 5 is return value
    
  • If the array is empty, returns 0.

    RANGE_BUCKET(80, []) -- 0 is return value
    
  • If the point is NULL or NaN, returns NULL.

    RANGE_BUCKET(NULL, [0, 10, 20, 30, 40]) -- NULL is return value
    
  • The data type for the point and array must be compatible.

    RANGE_BUCKET('a', ['a', 'b', 'c', 'd']) -- 1 is return value
    RANGE_BUCKET(1.2, [1, 1.2, 1.4, 1.6]) -- 2 is return value
    RANGE_BUCKET(1.2, [1, 2, 4, 6]) -- execution failure
    

Execution failure occurs when:

  • The array has a NaN or NULL value in it.

    RANGE_BUCKET(80, [NULL, 10, 20, 30, 40]) -- execution failure
    
  • The array is not sorted in ascending order.

    RANGE_BUCKET(30, [10, 30, 20, 40, 50]) -- execution failure
    

Parameters

  • point: A generic value.
  • boundaries_array: A generic array of values.

Return Value

INT64

Examples

In a table called students, check to see how many records would exist in each age_group bucket, based on a student's age:

  • age_group 0 (age < 10)
  • age_group 1 (age >= 10, age < 20)
  • age_group 2 (age >= 20, age < 30)
  • age_group 3 (age >= 30)
WITH students AS
(
  SELECT 9 AS age UNION ALL
  SELECT 20 AS age UNION ALL
  SELECT 25 AS age UNION ALL
  SELECT 31 AS age UNION ALL
  SELECT 32 AS age UNION ALL
  SELECT 33 AS age
)
SELECT RANGE_BUCKET(age, [10, 20, 30]) AS age_group, COUNT(*) AS count
FROM students
GROUP BY 1

+--------------+-------+
| age_group    | count |
+--------------+-------+
| 0            | 1     |
| 2            | 2     |
| 3            | 3     |
+--------------+-------+

The following sections describe the navigation functions that BigQuery supports. Navigation functions are a subset window functions. To create a window function call and learn about the syntax for window functions, see Window function_calls.

Navigation functions generally compute some value_expression over a different row in the window frame from the current row. The OVER clause syntax varies across navigation functions.

For all navigation functions, the result data type is the same type as value_expression.

FIRST_VALUE

FIRST_VALUE (value_expression [{RESPECT | IGNORE} NULLS])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]
  [ window_frame_clause ]

Description

Returns the value of the value_expression for the first row in the current window frame.

This function includes NULL values in the calculation unless IGNORE NULLS is present. If IGNORE NULLS is present, the function excludes NULL values from the calculation.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

value_expression can be any data type that an expression can return.

Return Data Type

Same type as value_expression.

Examples

The following example computes the fastest time for each division.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  FORMAT_TIMESTAMP('%X', finish_time) AS finish_time,
  division,
  FORMAT_TIMESTAMP('%X', fastest_time) AS fastest_time,
  TIMESTAMP_DIFF(finish_time, fastest_time, SECOND) AS delta_in_seconds
FROM (
  SELECT name,
  finish_time,
  division,
  FIRST_VALUE(finish_time)
    OVER (PARTITION BY division ORDER BY finish_time ASC
    ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS fastest_time
  FROM finishers);

+-----------------+-------------+----------+--------------+------------------+
| name            | finish_time | division | fastest_time | delta_in_seconds |
+-----------------+-------------+----------+--------------+------------------+
| Carly Forte     | 03:08:58    | F25-29   | 03:08:58     | 0                |
| Sophia Liu      | 02:51:45    | F30-34   | 02:51:45     | 0                |
| Nikki Leith     | 02:59:01    | F30-34   | 02:51:45     | 436              |
| Jen Edwards     | 03:06:36    | F30-34   | 02:51:45     | 891              |
| Meghan Lederer  | 03:07:41    | F30-34   | 02:51:45     | 956              |
| Lauren Reasoner | 03:10:14    | F30-34   | 02:51:45     | 1109             |
| Lisa Stelzner   | 02:54:11    | F35-39   | 02:54:11     | 0                |
| Lauren Matthews | 03:01:17    | F35-39   | 02:54:11     | 426              |
| Desiree Berry   | 03:05:42    | F35-39   | 02:54:11     | 691              |
| Suzy Slane      | 03:06:24    | F35-39   | 02:54:11     | 733              |
+-----------------+-------------+----------+--------------+------------------+

LAST_VALUE

LAST_VALUE (value_expression [{RESPECT | IGNORE} NULLS])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]
  [ window_frame_clause ]

Description

Returns the value of the value_expression for the last row in the current window frame.

This function includes NULL values in the calculation unless IGNORE NULLS is present. If IGNORE NULLS is present, the function excludes NULL values from the calculation.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

value_expression can be any data type that an expression can return.

Return Data Type

Same type as value_expression.

Examples

The following example computes the slowest time for each division.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  FORMAT_TIMESTAMP('%X', finish_time) AS finish_time,
  division,
  FORMAT_TIMESTAMP('%X', slowest_time) AS slowest_time,
  TIMESTAMP_DIFF(slowest_time, finish_time, SECOND) AS delta_in_seconds
FROM (
  SELECT name,
  finish_time,
  division,
  LAST_VALUE(finish_time)
    OVER (PARTITION BY division ORDER BY finish_time ASC
    ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS slowest_time
  FROM finishers);

+-----------------+-------------+----------+--------------+------------------+
| name            | finish_time | division | slowest_time | delta_in_seconds |
+-----------------+-------------+----------+--------------+------------------+
| Carly Forte     | 03:08:58    | F25-29   | 03:08:58     | 0                |
| Sophia Liu      | 02:51:45    | F30-34   | 03:10:14     | 1109             |
| Nikki Leith     | 02:59:01    | F30-34   | 03:10:14     | 673              |
| Jen Edwards     | 03:06:36    | F30-34   | 03:10:14     | 218              |
| Meghan Lederer  | 03:07:41    | F30-34   | 03:10:14     | 153              |
| Lauren Reasoner | 03:10:14    | F30-34   | 03:10:14     | 0                |
| Lisa Stelzner   | 02:54:11    | F35-39   | 03:06:24     | 733              |
| Lauren Matthews | 03:01:17    | F35-39   | 03:06:24     | 307              |
| Desiree Berry   | 03:05:42    | F35-39   | 03:06:24     | 42               |
| Suzy Slane      | 03:06:24    | F35-39   | 03:06:24     | 0                |
+-----------------+-------------+----------+--------------+------------------+

NTH_VALUE

NTH_VALUE (value_expression, constant_integer_expression [{RESPECT | IGNORE} NULLS])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]
  [ window_frame_clause ]

Description

Returns the value of value_expression at the Nth row of the current window frame, where Nth is defined by constant_integer_expression. Returns NULL if there is no such row.

This function includes NULL values in the calculation unless IGNORE NULLS is present. If IGNORE NULLS is present, the function excludes NULL values from the calculation.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

  • value_expression can be any data type that can be returned from an expression.
  • constant_integer_expression can be any constant expression that returns an integer.

Return Data Type

Same type as value_expression.

Examples

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  FORMAT_TIMESTAMP('%X', finish_time) AS finish_time,
  division,
  FORMAT_TIMESTAMP('%X', fastest_time) AS fastest_time,
  FORMAT_TIMESTAMP('%X', second_fastest) AS second_fastest
FROM (
  SELECT name,
  finish_time,
  division,finishers,
  FIRST_VALUE(finish_time)
    OVER w1 AS fastest_time,
  NTH_VALUE(finish_time, 2)
    OVER w1 as second_fastest
  FROM finishers
  WINDOW w1 AS (
    PARTITION BY division ORDER BY finish_time ASC
    ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING));

+-----------------+-------------+----------+--------------+----------------+
| name            | finish_time | division | fastest_time | second_fastest |
+-----------------+-------------+----------+--------------+----------------+
| Carly Forte     | 03:08:58    | F25-29   | 03:08:58     | NULL           |
| Sophia Liu      | 02:51:45    | F30-34   | 02:51:45     | 02:59:01       |
| Nikki Leith     | 02:59:01    | F30-34   | 02:51:45     | 02:59:01       |
| Jen Edwards     | 03:06:36    | F30-34   | 02:51:45     | 02:59:01       |
| Meghan Lederer  | 03:07:41    | F30-34   | 02:51:45     | 02:59:01       |
| Lauren Reasoner | 03:10:14    | F30-34   | 02:51:45     | 02:59:01       |
| Lisa Stelzner   | 02:54:11    | F35-39   | 02:54:11     | 03:01:17       |
| Lauren Matthews | 03:01:17    | F35-39   | 02:54:11     | 03:01:17       |
| Desiree Berry   | 03:05:42    | F35-39   | 02:54:11     | 03:01:17       |
| Suzy Slane      | 03:06:24    | F35-39   | 02:54:11     | 03:01:17       |
+-----------------+-------------+----------+--------------+----------------+

LEAD

LEAD (value_expression[, offset [, default_expression]])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

Returns the value of the value_expression on a subsequent row. Changing the offset value changes which subsequent row is returned; the default value is 1, indicating the next row in the window frame. An error occurs if offset is NULL or a negative value.

The optional default_expression is used if there isn't a row in the window frame at the specified offset. This expression must be a constant expression and its type must be implicitly coercible to the type of value_expression. If left unspecified, default_expression defaults to NULL.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

  • value_expression can be any data type that can be returned from an expression.
  • offset must be a non-negative integer literal or parameter.
  • default_expression must be compatible with the value expression type.

Return Data Type

Same type as value_expression.

Examples

The following example illustrates a basic use of the LEAD function.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  finish_time,
  division,
  LEAD(name)
    OVER (PARTITION BY division ORDER BY finish_time ASC) AS followed_by
FROM finishers;

+-----------------+-------------+----------+-----------------+
| name            | finish_time | division | followed_by     |
+-----------------+-------------+----------+-----------------+
| Carly Forte     | 03:08:58    | F25-29   | NULL            |
| Sophia Liu      | 02:51:45    | F30-34   | Nikki Leith     |
| Nikki Leith     | 02:59:01    | F30-34   | Jen Edwards     |
| Jen Edwards     | 03:06:36    | F30-34   | Meghan Lederer  |
| Meghan Lederer  | 03:07:41    | F30-34   | Lauren Reasoner |
| Lauren Reasoner | 03:10:14    | F30-34   | NULL            |
| Lisa Stelzner   | 02:54:11    | F35-39   | Lauren Matthews |
| Lauren Matthews | 03:01:17    | F35-39   | Desiree Berry   |
| Desiree Berry   | 03:05:42    | F35-39   | Suzy Slane      |
| Suzy Slane      | 03:06:24    | F35-39   | NULL            |
+-----------------+-------------+----------+-----------------+

This next example uses the optional offset parameter.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  finish_time,
  division,
  LEAD(name, 2)
    OVER (PARTITION BY division ORDER BY finish_time ASC) AS two_runners_back
FROM finishers;

+-----------------+-------------+----------+------------------+
| name            | finish_time | division | two_runners_back |
+-----------------+-------------+----------+------------------+
| Carly Forte     | 03:08:58    | F25-29   | NULL             |
| Sophia Liu      | 02:51:45    | F30-34   | Jen Edwards      |
| Nikki Leith     | 02:59:01    | F30-34   | Meghan Lederer   |
| Jen Edwards     | 03:06:36    | F30-34   | Lauren Reasoner  |
| Meghan Lederer  | 03:07:41    | F30-34   | NULL             |
| Lauren Reasoner | 03:10:14    | F30-34   | NULL             |
| Lisa Stelzner   | 02:54:11    | F35-39   | Desiree Berry    |
| Lauren Matthews | 03:01:17    | F35-39   | Suzy Slane       |
| Desiree Berry   | 03:05:42    | F35-39   | NULL             |
| Suzy Slane      | 03:06:24    | F35-39   | NULL             |
+-----------------+-------------+----------+------------------+

The following example replaces NULL values with a default value.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  finish_time,
  division,
  LEAD(name, 2, 'Nobody')
    OVER (PARTITION BY division ORDER BY finish_time ASC) AS two_runners_back
FROM finishers;

+-----------------+-------------+----------+------------------+
| name            | finish_time | division | two_runners_back |
+-----------------+-------------+----------+------------------+
| Carly Forte     | 03:08:58    | F25-29   | Nobody           |
| Sophia Liu      | 02:51:45    | F30-34   | Jen Edwards      |
| Nikki Leith     | 02:59:01    | F30-34   | Meghan Lederer   |
| Jen Edwards     | 03:06:36    | F30-34   | Lauren Reasoner  |
| Meghan Lederer  | 03:07:41    | F30-34   | Nobody           |
| Lauren Reasoner | 03:10:14    | F30-34   | Nobody           |
| Lisa Stelzner   | 02:54:11    | F35-39   | Desiree Berry    |
| Lauren Matthews | 03:01:17    | F35-39   | Suzy Slane       |
| Desiree Berry   | 03:05:42    | F35-39   | Nobody           |
| Suzy Slane      | 03:06:24    | F35-39   | Nobody           |
+-----------------+-------------+----------+------------------+

LAG

LAG (value_expression[, offset [, default_expression]])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  ORDER BY expression [ { ASC | DESC }  ] [, ...]

Description

Returns the value of the value_expression on a preceding row. Changing the offset value changes which preceding row is returned; the default value is 1, indicating the previous row in the window frame. An error occurs if offset is NULL or a negative value.

The optional default_expression is used if there isn't a row in the window frame at the specified offset. This expression must be a constant expression and its type must be implicitly coercible to the type of value_expression. If left unspecified, default_expression defaults to NULL.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

  • value_expression can be any data type that can be returned from an expression.
  • offset must be a non-negative integer literal or parameter.
  • default_expression must be compatible with the value expression type.

Return Data Type

Same type as value_expression.

Examples

The following example illustrates a basic use of the LAG function.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  finish_time,
  division,
  LAG(name)
    OVER (PARTITION BY division ORDER BY finish_time ASC) AS preceding_runner
FROM finishers;

+-----------------+-------------+----------+------------------+
| name            | finish_time | division | preceding_runner |
+-----------------+-------------+----------+------------------+
| Carly Forte     | 03:08:58    | F25-29   | NULL             |
| Sophia Liu      | 02:51:45    | F30-34   | NULL             |
| Nikki Leith     | 02:59:01    | F30-34   | Sophia Liu       |
| Jen Edwards     | 03:06:36    | F30-34   | Nikki Leith      |
| Meghan Lederer  | 03:07:41    | F30-34   | Jen Edwards      |
| Lauren Reasoner | 03:10:14    | F30-34   | Meghan Lederer   |
| Lisa Stelzner   | 02:54:11    | F35-39   | NULL             |
| Lauren Matthews | 03:01:17    | F35-39   | Lisa Stelzner    |
| Desiree Berry   | 03:05:42    | F35-39   | Lauren Matthews  |
| Suzy Slane      | 03:06:24    | F35-39   | Desiree Berry    |
+-----------------+-------------+----------+------------------+

This next example uses the optional offset parameter.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  finish_time,
  division,
  LAG(name, 2)
    OVER (PARTITION BY division ORDER BY finish_time ASC) AS two_runners_ahead
FROM finishers;

+-----------------+-------------+----------+-------------------+
| name            | finish_time | division | two_runners_ahead |
+-----------------+-------------+----------+-------------------+
| Carly Forte     | 03:08:58    | F25-29   | NULL              |
| Sophia Liu      | 02:51:45    | F30-34   | NULL              |
| Nikki Leith     | 02:59:01    | F30-34   | NULL              |
| Jen Edwards     | 03:06:36    | F30-34   | Sophia Liu        |
| Meghan Lederer  | 03:07:41    | F30-34   | Nikki Leith       |
| Lauren Reasoner | 03:10:14    | F30-34   | Jen Edwards       |
| Lisa Stelzner   | 02:54:11    | F35-39   | NULL              |
| Lauren Matthews | 03:01:17    | F35-39   | NULL              |
| Desiree Berry   | 03:05:42    | F35-39   | Lisa Stelzner     |
| Suzy Slane      | 03:06:24    | F35-39   | Lauren Matthews   |
+-----------------+-------------+----------+-------------------+

The following example replaces NULL values with a default value.

WITH finishers AS
 (SELECT 'Sophia Liu' as name,
  TIMESTAMP '2016-10-18 2:51:45' as finish_time,
  'F30-34' as division
  UNION ALL SELECT 'Lisa Stelzner', TIMESTAMP '2016-10-18 2:54:11', 'F35-39'
  UNION ALL SELECT 'Nikki Leith', TIMESTAMP '2016-10-18 2:59:01', 'F30-34'
  UNION ALL SELECT 'Lauren Matthews', TIMESTAMP '2016-10-18 3:01:17', 'F35-39'
  UNION ALL SELECT 'Desiree Berry', TIMESTAMP '2016-10-18 3:05:42', 'F35-39'
  UNION ALL SELECT 'Suzy Slane', TIMESTAMP '2016-10-18 3:06:24', 'F35-39'
  UNION ALL SELECT 'Jen Edwards', TIMESTAMP '2016-10-18 3:06:36', 'F30-34'
  UNION ALL SELECT 'Meghan Lederer', TIMESTAMP '2016-10-18 3:07:41', 'F30-34'
  UNION ALL SELECT 'Carly Forte', TIMESTAMP '2016-10-18 3:08:58', 'F25-29'
  UNION ALL SELECT 'Lauren Reasoner', TIMESTAMP '2016-10-18 3:10:14', 'F30-34')
SELECT name,
  finish_time,
  division,
  LAG(name, 2, 'Nobody')
    OVER (PARTITION BY division ORDER BY finish_time ASC) AS two_runners_ahead
FROM finishers;

+-----------------+-------------+----------+-------------------+
| name            | finish_time | division | two_runners_ahead |
+-----------------+-------------+----------+-------------------+
| Carly Forte     | 03:08:58    | F25-29   | Nobody            |
| Sophia Liu      | 02:51:45    | F30-34   | Nobody            |
| Nikki Leith     | 02:59:01    | F30-34   | Nobody            |
| Jen Edwards     | 03:06:36    | F30-34   | Sophia Liu        |
| Meghan Lederer  | 03:07:41    | F30-34   | Nikki Leith       |
| Lauren Reasoner | 03:10:14    | F30-34   | Jen Edwards       |
| Lisa Stelzner   | 02:54:11    | F35-39   | Nobody            |
| Lauren Matthews | 03:01:17    | F35-39   | Nobody            |
| Desiree Berry   | 03:05:42    | F35-39   | Lisa Stelzner     |
| Suzy Slane      | 03:06:24    | F35-39   | Lauren Matthews   |
+-----------------+-------------+----------+-------------------+

PERCENTILE_CONT

PERCENTILE_CONT (value_expression, percentile [{RESPECT | IGNORE} NULLS])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]

Description

Computes the specified percentile value for the value_expression, with linear interpolation.

This function ignores NULL values if RESPECT NULLS is absent. If RESPECT NULLS is present:

  • Interpolation between two NULL values returns NULL.
  • Interpolation between a NULL value and a non-NULL value returns the non-NULL value.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

  • value_expression and percentile must have one of the following types:
    • NUMERIC
    • BIGNUMERIC
    • FLOAT64
  • percentile must be a literal in the range [0, 1].

Return Data Type

The return data type is determined by the argument types with the following table.

INPUTNUMERICBIGNUMERICFLOAT64
NUMERICNUMERIC BIGNUMERIC FLOAT64
BIGNUMERICBIGNUMERIC BIGNUMERIC FLOAT64
FLOAT64FLOAT64 FLOAT64 FLOAT64

Examples

The following example computes the value for some percentiles from a column of values while ignoring nulls.

SELECT
  PERCENTILE_CONT(x, 0) OVER() AS min,
  PERCENTILE_CONT(x, 0.01) OVER() AS percentile1,
  PERCENTILE_CONT(x, 0.5) OVER() AS median,
  PERCENTILE_CONT(x, 0.9) OVER() AS percentile90,
  PERCENTILE_CONT(x, 1) OVER() AS max
FROM UNNEST([0, 3, NULL, 1, 2]) AS x LIMIT 1;

+-----+-------------+--------+--------------+-----+
| min | percentile1 | median | percentile90 | max |
+-----+-------------+--------+--------------+-----+
| 0   | 0.03        | 1.5    | 2.7          | 3   |
+-----+-------------+--------+--------------+-----+

The following example computes the value for some percentiles from a column of values while respecting nulls.

SELECT
  PERCENTILE_CONT(x, 0 RESPECT NULLS) OVER() AS min,
  PERCENTILE_CONT(x, 0.01 RESPECT NULLS) OVER() AS percentile1,
  PERCENTILE_CONT(x, 0.5 RESPECT NULLS) OVER() AS median,
  PERCENTILE_CONT(x, 0.9 RESPECT NULLS) OVER() AS percentile90,
  PERCENTILE_CONT(x, 1 RESPECT NULLS) OVER() AS max
FROM UNNEST([0, 3, NULL, 1, 2]) AS x LIMIT 1;

+------+-------------+--------+--------------+-----+
| min  | percentile1 | median | percentile90 | max |
+------+-------------+--------+--------------+-----+
| NULL | 0           | 1      | 2.6          | 3   |
+------+-------------+--------+--------------+-----+

PERCENTILE_DISC

PERCENTILE_DISC (value_expression, percentile [{RESPECT | IGNORE} NULLS])
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]

Description

Computes the specified percentile value for a discrete value_expression. The returned value is the first sorted value of value_expression with cumulative distribution greater than or equal to the given percentile value.

This function ignores NULL values unless RESPECT NULLS is present.

To learn more about the OVER clause and how to use it, see Window function calls.

Supported Argument Types

  • value_expression can be any orderable type.
  • percentile must be a literal in the range [0, 1], with one of the following types:
    • NUMERIC
    • BIGNUMERIC
    • FLOAT64

Return Data Type

Same type as value_expression.

Examples

The following example computes the value for some percentiles from a column of values while ignoring nulls.

SELECT
  x,
  PERCENTILE_DISC(x, 0) OVER() AS min,
  PERCENTILE_DISC(x, 0.5) OVER() AS median,
  PERCENTILE_DISC(x, 1) OVER() AS max
FROM UNNEST(['c', NULL, 'b', 'a']) AS x;

+------+-----+--------+-----+
| x    | min | median | max |
+------+-----+--------+-----+
| c    | a   | b      | c   |
| NULL | a   | b      | c   |
| b    | a   | b      | c   |
| a    | a   | b      | c   |
+------+-----+--------+-----+

The following example computes the value for some percentiles from a column of values while respecting nulls.

SELECT
  x,
  PERCENTILE_DISC(x, 0 RESPECT NULLS) OVER() AS min,
  PERCENTILE_DISC(x, 0.5 RESPECT NULLS) OVER() AS median,
  PERCENTILE_DISC(x, 1 RESPECT NULLS) OVER() AS max
FROM UNNEST(['c', NULL, 'b', 'a']) AS x;

+------+------+--------+-----+
| x    | min  | median | max |
+------+------+--------+-----+
| c    | NULL | a      | c   |
| NULL | NULL | a      | c   |
| b    | NULL | a      | c   |
| a    | NULL | a      | c   |
+------+------+--------+-----+

Hash functions

FARM_FINGERPRINT

FARM_FINGERPRINT(value)

Description

Computes the fingerprint of the STRING or BYTES input using the Fingerprint64 function from the open-source FarmHash library. The output of this function for a particular input will never change.

Return type

INT64

Examples

WITH example AS (
  SELECT 1 AS x, "foo" AS y, true AS z UNION ALL
  SELECT 2 AS x, "apple" AS y, false AS z UNION ALL
  SELECT 3 AS x, "" AS y, true AS z
)
SELECT
  *,
  FARM_FINGERPRINT(CONCAT(CAST(x AS STRING), y, CAST(z AS STRING)))
    AS row_fingerprint
FROM example;
+---+-------+-------+----------------------+
| x | y     | z     | row_fingerprint      |
+---+-------+-------+----------------------+
| 1 | foo   | true  | -1541654101129638711 |
| 2 | apple | false | 2794438866806483259  |
| 3 |       | true  | -4880158226897771312 |
+---+-------+-------+----------------------+

MD5

MD5(input)

Description

Computes the hash of the input using the MD5 algorithm. The input can either be STRING or BYTES. The string version treats the input as an array of bytes.

This function returns 16 bytes.

Return type

BYTES

Example

SELECT MD5("Hello World") as md5;

-- Note that the result of MD5 is of type BYTES, displayed as a base64-encoded string.
+--------------------------+
| md5                      |
+--------------------------+
| sQqNsWTgdUEFt6mb5y4/5Q== |
+--------------------------+

SHA1

SHA1(input)

Description

Computes the hash of the input using the SHA-1 algorithm. The input can either be STRING or BYTES. The string version treats the input as an array of bytes.

This function returns 20 bytes.

Return type

BYTES

Example

SELECT SHA1("Hello World") as sha1;

-- Note that the result of SHA1 is of type BYTES, displayed as a base64-encoded string.
+------------------------------+
| sha1                         |
+------------------------------+
| Ck1VqNd45QIvq3AZd8XYQLvEhtA= |
+------------------------------+

SHA256

SHA256(input)

Description

Computes the hash of the input using the SHA-256 algorithm. The input can either be STRING or BYTES. The string version treats the input as an array of bytes.

This function returns 32 bytes.

Return type

BYTES

Example

SELECT SHA256("Hello World") as sha256;

SHA512

SHA512(input)

Description

Computes the hash of the input using the SHA-512 algorithm. The input can either be STRING or BYTES. The string version treats the input as an array of bytes.

This function returns 64 bytes.

Return type

BYTES

Example

SELECT SHA512("Hello World") as sha512;

String functions

These string functions work on two different values: STRING and BYTES data types. STRING values must be well-formed UTF-8.

Functions that return position values, such as STRPOS, encode those positions as INT64. The value 1 refers to the first character (or byte), 2 refers to the second, and so on. The value 0 indicates an invalid index. When working on STRING types, the returned positions refer to character positions.

All string comparisons are done byte-by-byte, without regard to Unicode canonical equivalence.

ASCII

ASCII(value)

Description

Returns the ASCII code for the first character or byte in value. Returns 0 if value is empty or the ASCII code is 0 for the first character or byte.

Return type

INT64

Examples

SELECT ASCII('abcd') as A, ASCII('a') as B, ASCII('') as C, ASCII(NULL) as D;

+-------+-------+-------+-------+
| A     | B     | C     | D     |
+-------+-------+-------+-------+
| 97    | 97    | 0     | NULL  |
+-------+-------+-------+-------+

BYTE_LENGTH

BYTE_LENGTH(value)

Description

Returns the length of the STRING or BYTES value in BYTES, regardless of whether the type of the value is STRING or BYTES.

Return type

INT64

Examples

WITH example AS
  (SELECT 'абвгд' AS characters, b'абвгд' AS bytes)

SELECT
  characters,
  BYTE_LENGTH(characters) AS string_example,
  bytes,
  BYTE_LENGTH(bytes) AS bytes_example
FROM example;

+------------+----------------+-------+---------------+
| characters | string_example | bytes | bytes_example |
+------------+----------------+-------+---------------+
| абвгд      | 10             | абвгд | 10            |
+------------+----------------+-------+---------------+

CHAR_LENGTH

CHAR_LENGTH(value)

Description

Returns the length of the STRING in characters.

Return type

INT64

Examples

WITH example AS
  (SELECT 'абвгд' AS characters)

SELECT
  characters,
  CHAR_LENGTH(characters) AS char_length_example
FROM example;

+------------+---------------------+
| characters | char_length_example |
+------------+---------------------+
| абвгд      |                   5 |
+------------+---------------------+

CHARACTER_LENGTH

CHARACTER_LENGTH(value)

Description

Synonym for CHAR_LENGTH.

Return type

INT64

Examples

WITH example AS
  (SELECT 'абвгд' AS characters)

SELECT
  characters,
  CHARACTER_LENGTH(characters) AS char_length_example
FROM example;

+------------+---------------------+
| characters | char_length_example |
+------------+---------------------+
| абвгд      |                   5 |
+------------+---------------------+

CHR

CHR(value)

Description

Takes a Unicode code point and returns the character that matches the code point. Each valid code point should fall within the range of [0, 0xD7FF] and [0xE000, 0x10FFFF]. Returns an empty string if the code point is 0. If an invalid Unicode code point is specified, an error is returned.

To work with an array of Unicode code points, see CODE_POINTS_TO_STRING

Return type

STRING

Examples

SELECT CHR(65) AS A, CHR(255) AS B, CHR(513) AS C, CHR(1024)  AS D;

+-------+-------+-------+-------+
| A     | B     | C     | D     |
+-------+-------+-------+-------+
| A     | ÿ     | ȁ     | Ѐ     |
+-------+-------+-------+-------+
SELECT CHR(97) AS A, CHR(0xF9B5) AS B, CHR(0) AS C, CHR(NULL) AS D;

+-------+-------+-------+-------+
| A     | B     | C     | D     |
+-------+-------+-------+-------+
| a     | 例    |       | NULL  |
+-------+-------+-------+-------+

CODE_POINTS_TO_BYTES

CODE_POINTS_TO_BYTES(ascii_code_points)

Description

Takes an array of extended ASCII code points (ARRAY of INT64) and returns BYTES.

To convert from BYTES to an array of code points, see TO_CODE_POINTS.

Return type

BYTES

Examples

The following is a basic example using CODE_POINTS_TO_BYTES.

SELECT CODE_POINTS_TO_BYTES([65, 98, 67, 100]) AS bytes;

-- Note that the result of CODE_POINTS_TO_BYTES is of type BYTES, displayed as a base64-encoded string.
-- In BYTES format, b'AbCd' is the result.
+----------+
| bytes    |
+----------+
| QWJDZA== |
+----------+

The following example uses a rotate-by-13 places (ROT13) algorithm to encode a string.

SELECT CODE_POINTS_TO_BYTES(ARRAY_AGG(
  (SELECT
      CASE
        WHEN chr BETWEEN b'a' and b'z'
          THEN TO_CODE_POINTS(b'a')[offset(0)] +
            MOD(code+13-TO_CODE_POINTS(b'a')[offset(0)],26)
        WHEN chr BETWEEN b'A' and b'Z'
          THEN TO_CODE_POINTS(b'A')[offset(0)] +
            MOD(code+13-TO_CODE_POINTS(b'A')[offset(0)],26)
        ELSE code
      END
   FROM
     (SELECT code, CODE_POINTS_TO_BYTES([code]) chr)
  ) ORDER BY OFFSET)) AS encoded_string
FROM UNNEST(TO_CODE_POINTS(b'Test String!')) code WITH OFFSET;

-- Note that the result of CODE_POINTS_TO_BYTES is of type BYTES, displayed as a base64-encoded string.
-- In BYTES format, b'Grfg Fgevat!' is the result.
+------------------+
| encoded_string   |
+------------------+
| R3JmZyBGZ2V2YXQh |
+------------------+

CODE_POINTS_TO_STRING

CODE_POINTS_TO_STRING(unicode_code_points)

Description

Takes an array of Unicode code points (ARRAY of INT64) and returns a STRING.

To convert from a string to an array of code points, see TO_CODE_POINTS.

Return type

STRING

Examples

The following are basic examples using CODE_POINTS_TO_STRING.

SELECT CODE_POINTS_TO_STRING([65, 255, 513, 1024]) AS string;

+--------+
| string |
+--------+
| AÿȁЀ   |
+--------+
SELECT CODE_POINTS_TO_STRING([97, 0, 0xF9B5]) AS string;

+--------+
| string |
+--------+
| a例    |
+--------+
SELECT CODE_POINTS_TO_STRING([65, 255, NULL, 1024]) AS string;

+--------+
| string |
+--------+
| NULL   |
+--------+

The following example computes the frequency of letters in a set of words.

WITH Words AS (
  SELECT word
  FROM UNNEST(['foo', 'bar', 'baz', 'giraffe', 'llama']) AS word
)
SELECT
  CODE_POINTS_TO_STRING([code_point]) AS letter,
  COUNT(*) AS letter_count
FROM Words,
  UNNEST(TO_CODE_POINTS(word)) AS code_point
GROUP BY 1
ORDER BY 2 DESC;

+--------+--------------+
| letter | letter_count |
+--------+--------------+
| a      | 5            |
| f      | 3            |
| r      | 2            |
| b      | 2            |
| l      | 2            |
| o      | 2            |
| g      | 1            |
| z      | 1            |
| e      | 1            |
| m      | 1            |
| i      | 1            |
+--------+--------------+

COLLATE

COLLATE(value, collate_specification)

Takes a STRING and a collation specification. Returns a STRING with a collation specification. If collate_specification is empty, returns a value with collation removed from the STRING.

The collation specification defines how the resulting STRING can be compared and sorted. To learn more, see Working with collation.

  • collation_specification must be a string literal, otherwise an error is thrown.
  • Returns NULL if value is NULL.

Return type

STRING

Examples

In this example, the weight of a is less than the weight of Z. This is because the collate specification, und:ci assigns more weight to Z.

WITH Words AS (
  SELECT
    COLLATE('a', 'und:ci') AS char1,
    COLLATE('Z', 'und:ci') AS char2
)
SELECT ( Words.char1 < Words.char2 ) AS a_less_than_Z
FROM Words;

+----------------+
| a_less_than_Z  |
+----------------+
| TRUE           |
+----------------+

In this example, the weight of a is greater than the weight of Z. This is because the default collate specification assigns more weight to a.

WITH Words AS (
  SELECT
    'a' AS char1,
    'Z' AS char2
)
SELECT ( Words.char1 < Words.char2 ) AS a_less_than_Z
FROM Words;

+----------------+
| a_less_than_Z  |
+----------------+
| FALSE          |
+----------------+

CONCAT

CONCAT(value1[, ...])

Description

Concatenates one or more values into a single result. All values must be BYTES or data types that can be cast to STRING.

The function returns NULL if any input argument is NULL.

Return type

STRING or BYTES

Examples

SELECT CONCAT('T.P.', ' ', 'Bar') as author;

+---------------------+
| author              |
+---------------------+
| T.P. Bar            |
+---------------------+
SELECT CONCAT('Summer', ' ', 1923) as release_date;

+---------------------+
| release_date        |
+---------------------+
| Summer 1923         |
+---------------------+

With Employees AS
  (SELECT
    'John' AS first_name,
    'Doe' AS last_name
  UNION ALL
  SELECT
    'Jane' AS first_name,
    'Smith' AS last_name
  UNION ALL
  SELECT
    'Joe' AS first_name,
    'Jackson' AS last_name)

SELECT
  CONCAT(first_name, ' ', last_name)
  AS full_name
FROM Employees;

+---------------------+
| full_name           |
+---------------------+
| John Doe            |
| Jane Smith          |
| Joe Jackson         |
+---------------------+

CONTAINS_SUBSTR

CONTAINS_SUBSTR(expression, search_value_literal)

Description

Performs a normalized, case-insensitive search to see if a value exists in an expression. Returns TRUE if the value exists, otherwise returns FALSE.

The search value must be a STRING literal, but not the literal NULL.

The expression can be a column or table reference. A table reference is evaluated as a STRUCT whose fields are the columns of the table. A column reference is evaluated as one the following data types:

  • STRING
  • INT64
  • BOOL
  • NUMERIC
  • BIGNUMERIC
  • TIMESTAMP
  • TIME
  • DATE
  • DATETIME
  • ARRAY
  • STRUCT

When the expression is evaluated, the result is cast to a STRING, and then the function looks for the search value in the result. If the search value is NULL, an error is thrown. If the expression is NULL, the return value is NULL.

You can perform a cross-field search on an expression that evaluates to a STRUCT or ARRAY. If the expression evaluates to a STRUCT, the cross-field search is recursive and includes all subfields inside the STRUCT.

In a cross-field search, each field and subfield is individually converted to a string and searched for the value. The function returns TRUE if at least one field includes the search value; otherwise, if at least one field is NULL, it returns NULL; otherwise, if the search value is not found and all fields are non-NULL, it returns FALSE.

Before values are compared, they are normalized and case folded with NFKC normalization. Wildcard searches are not supported.

Return type

BOOL

Examples

The following query returns TRUE because this case-insensitive match was found: blue house and Blue house.

SELECT CONTAINS_SUBSTR('the blue house', 'Blue house') AS result;

+--------+
| result |
+--------+
| true   |
+--------+

The following query returns FALSE because blue was not found in the red house.

SELECT CONTAINS_SUBSTR('the red house', 'blue') AS result;

+--------+
| result |
+--------+
| false  |
+--------+

The following query returns TRUE because and IX represent the same normalized value.

SELECT '\u2168 day' AS a, 'IX' AS b, CONTAINS_SUBSTR('\u2168', 'IX') AS result;

+----------------------+
| a      | b  | result |
+----------------------+
| Ⅸ day | IX | true   |
+----------------------+

The following query returns TRUE because 35 was found inside a STRUCT field.

SELECT CONTAINS_SUBSTR((23, 35, 41), '35') AS result;

+--------+
| result |
+--------+
| true   |
+--------+

The following query returns TRUE because jk was found during a recursive search inside a STRUCT.

SELECT CONTAINS_SUBSTR(('abc', ['def', 'ghi', 'jkl'], 'mno'), 'jk');

+--------+
| result |
+--------+
| true   |
+--------+

The following query returns TRUE because NULLs are ignored when a match is found found inside a STRUCT or ARRAY.

SELECT CONTAINS_SUBSTR((23, NULL, 41), '41') AS result;

+--------+
| result |
+--------+
| true   |
+--------+

The following query returns NULL because a NULL existed in a STRUCT that did not result in a match.

SELECT CONTAINS_SUBSTR((23, NULL, 41), '35') AS result;

+--------+
| result |
+--------+
| null   |
+--------+

In the following query, an error is thrown because the search value cannot be a literal NULL.

SELECT CONTAINS_SUBSTR('hello', NULL) AS result;
-- Throws an error

The following examples reference a table called Recipes that you can emulate with a WITH clause like this:

WITH Recipes AS
 (SELECT 'Blueberry pancakes' as Breakfast, 'Egg salad sandwich' as Lunch, 'Potato dumplings' as Dinner UNION ALL
  SELECT 'Potato pancakes', 'Toasted cheese sandwich', 'Beef stroganoff' UNION ALL
  SELECT 'Ham scramble', 'Steak avocado salad', 'Tomato pasta' UNION ALL
  SELECT 'Avocado toast', 'Tomato soup', 'Blueberry salmon' UNION ALL
  SELECT 'Corned beef hash', 'Lentil potato soup', 'Glazed ham')
SELECT * FROM Recipes;

+-------------------+-------------------------+------------------+
| Breakfast         | Lunch                   | Dinner           |
+-------------------+-------------------------+------------------+
| Bluberry pancakes | Egg salad sandwich      | Potato dumplings |
| Potato pancakes   | Toasted cheese sandwich | Beef stroganoff  |
| Ham scramble      | Steak avocado salad     | Tomato pasta     |
| Avocado toast     | Tomato soup             | Blueberry samon  |
| Corned beef hash  | Lentil potato soup      | Glazed ham       |
+-------------------+-------------------------+------------------+

The following query searches across all columns of the Recipes table for the value toast and returns the rows that contain this value.

SELECT * FROM Recipes WHERE CONTAINS_SUBSTR(Recipes, 'toast');

+-------------------+-------------------------+------------------+
| Breakfast         | Lunch                   | Dinner           |
+-------------------+-------------------------+------------------+
| Potato pancakes   | Toasted cheese sandwich | Beef stroganoff  |
| Avocado toast     | Tomato soup             | Blueberry samon  |
+-------------------+-------------------------+------------------+

The following query searches the Lunch and Dinner columns of the Recipe table for the value potato and returns the row if either column contains this value.

SELECT * FROM Recipes WHERE CONTAINS_SUBSTR((Lunch, Dinner), 'potato');

+-------------------+-------------------------+------------------+
| Breakfast         | Lunch                   | Dinner           |
+-------------------+-------------------------+------------------+
| Bluberry pancakes | Egg salad sandwich      | Potato dumplings |
| Corned beef hash  | Lentil potato soup      | Glazed ham       |
+-------------------+-------------------------+------------------+

The following queries search across all columns of the Recipes table except for the Lunch and Dinner columns. They return the rows of any columns other than Lunch or Dinner that contain the value potato.

SELECT *
FROM Recipes
WHERE CONTAINS_SUBSTR(
  (SELECT AS STRUCT Recipes.* EXCEPT (Lunch, Dinner)),
  'potato'
);

+-------------------+-------------------------+------------------+
| Breakfast         | Lunch                   | Dinner           |
+-------------------+-------------------------+------------------+
| Potato pancakes   | Toasted cheese sandwich | Beef stroganoff  |
+-------------------+-------------------------+------------------+

ENDS_WITH

ENDS_WITH(value1, value2)

Description

Takes two STRING or BYTES values. Returns TRUE if the second value is a suffix of the first.

This function supports specifying collation.

Return type

BOOL

Examples

WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  ENDS_WITH(item, 'e') as example
FROM items;

+---------+
| example |
+---------+
|    True |
|   False |
|    True |
+---------+

FORMAT

FORMAT(format_string_expression, data_type_expression[, ...])

Description

FORMAT formats a data type expression as a string.

  • format_string_expression: Can contain zero or more format specifiers. Each format specifier is introduced by the % symbol, and must map to one or more of the remaining arguments. In general, this is a one-to-one mapping, except when the * specifier is present. For example, %.*i maps to two arguments—a length argument and a signed integer argument. If the number of arguments related to the format specifiers is not the same as the number of arguments, an error occurs.
  • data_type_expression: The value to format as a string. This can be any BigQuery data type.

Return type

STRING

Examples

DescriptionStatementResult
Simple integer FORMAT('%d', 10) 10
Integer with left blank padding FORMAT('|%10d|', 11) |           11|
Integer with left zero padding FORMAT('+%010d+', 12) +0000000012+
Integer with commas FORMAT("%'d", 123456789) 123,456,789
STRING FORMAT('-%s-', 'abcd efg') -abcd efg-
FLOAT64 FORMAT('%f %E', 1.1, 2.2) 1.100000 2.200000E+00
DATE FORMAT('%t', date '2015-09-01') 2015-09-01
TIMESTAMP FORMAT('%t', timestamp '2015-09-01 12:34:56 America/Los_Angeles') 2015‑09‑01 19:34:56+00

The FORMAT() function does not provide fully customizable formatting for all types and values, nor formatting that is sensitive to locale.

If custom formatting is necessary for a type, you must first format it using type-specific format functions, such as FORMAT_DATE() or FORMAT_TIMESTAMP(). For example:

SELECT FORMAT('date: %s!', FORMAT_DATE('%B %d, %Y', date '2015-01-02'));

Returns

date: January 02, 2015!

Supported format specifiers

%[flags][width][.precision]specifier

A format specifier adds formatting when casting a value to a string. It can optionally contain these sub-specifiers:

  • Flags
  • Width
  • Precision

Additional information about format specifiers:

  • %g and %G behavior
  • %p and %P behavior
  • %t and %T behavior
  • Error conditions
  • NULL argument handling
  • Additional semantic rules
Format specifiers
Specifier Description Examples Types
d or i Decimal integer 392 INT64
o Octal 610
INT64*
x Hexadecimal integer 7fa
INT64*
X Hexadecimal integer (uppercase) 7FA
INT64*
f Decimal notation, in [-](integer part).(fractional part) for finite values, and in lowercase for non-finite values 392.650000
inf
nan
NUMERIC
BIGNUMERIC
FLOAT64
F Decimal notation, in [-](integer part).(fractional part) for finite values, and in uppercase for non-finite values 392.650000
INF
NAN
NUMERIC
BIGNUMERIC
FLOAT64
e Scientific notation (mantissa/exponent), lowercase 3.926500e+02
inf
nan
NUMERIC
BIGNUMERIC
FLOAT64
E Scientific notation (mantissa/exponent), uppercase 3.926500E+02
INF
NAN
NUMERIC
BIGNUMERIC
FLOAT64
g Either decimal notation or scientific notation, depending on the input value's exponent and the specified precision. Lowercase. See %g and %G behavior for details. 392.65
3.9265e+07
inf
nan
NUMERIC
BIGNUMERIC
FLOAT64
G Either decimal notation or scientific notation, depending on the input value's exponent and the specified precision. Uppercase. See %g and %G behavior for details. 392.65
3.9265E+07
INF
NAN
NUMERIC
BIGNUMERIC
FLOAT64
p Produces a one-line printable string representing JSON. See %p and %P behavior.
{"month":10,"year":2019}
JSON
P Produces a multi-line printable string representing JSON. See %p and %P behavior.
{
  "month": 10,
  "year": 2019
}
JSON
s String of characters sample STRING
t Returns a printable string representing the value. Often looks similar to casting the argument to STRING. See %t and %T behavior. sample
2014‑01‑01
<any>
T Produces a string that is a valid BigQuery constant with a similar type to the value's type (maybe wider, or maybe string). See %t and %T behavior. 'sample'
b'bytes sample'
1234
2.3
date '2014‑01‑01'
<any>
% '%%' produces a single '%' % n/a

*The specifiers %o, %x, and %X raise an error if negative values are used.

The format specifier can optionally contain the sub-specifiers identified above in the specifier prototype.

These sub-specifiers must comply with the following specifications.

Flags
Flags Description
- Left-justify within the given field width; Right justification is the default (see width sub-specifier)
+ Forces to precede the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign
<space> If no sign is going to be written, a blank space is inserted before the value
#
  • For `%o`, `%x`, and `%X`, this flag means to precede the value with 0, 0x or 0X respectively for values different than zero.
  • For `%f`, `%F`, `%e`, and `%E`, this flag means to add the decimal point even when there is no fractional part, unless the value is non-finite.
  • For `%g` and `%G`, this flag means to add the decimal point even when there is no fractional part unless the value is non-finite, and never remove the trailing zeros after the decimal point.
0 Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier)
'

Formats integers using the appropriating grouping character. For example:

  • FORMAT("%'d", 12345678) returns 12,345,678
  • FORMAT("%'x", 12345678) returns bc:614e
  • FORMAT("%'o", 55555) returns 15,4403
  • This flag is only relevant for decimal, hex, and octal values.

Flags may be specified in any order. Duplicate flags are not an error. When flags are not relevant for some element type, they are ignored.

Width
Width Description
<number> Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger
* The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted
Precision
Precision Description
.<number>
  • For integer specifiers `%d`, `%i`, `%o`, `%u`, `%x`, and `%X`: precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with trailing zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0.
  • For specifiers `%a`, `%A`, `%e`, `%E`, `%f`, and `%F`: this is the number of digits to be printed after the decimal point. The default value is 6.
  • For specifiers `%g` and `%G`: this is the number of significant digits to be printed, before the removal of the trailing zeros after the decimal point. The default value is 6.
.* The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted
%g and %G behavior

The %g and %G format specifiers choose either the decimal notation (like the %f and %F specifiers) or the scientific notation (like the %e and %E specifiers), depending on the input value's exponent and the specified precision.

Let p stand for the specified precision (defaults to 6; 1 if the specified precision is less than 1). The input value is first converted to scientific notation with precision = (p - 1). If the resulting exponent part x is less than -4 or no less than p, the scientific notation with precision = (p - 1) is used; otherwise the decimal notation with precision = (p - 1 - x) is used.

Unless # flag is present, the trailing zeros after the decimal point are removed, and the decimal point is also removed if there is no digit after it.

%p and %P behavior

The %p format specifier produces a one-line printable string. The %P format specifier produces a multi-line printable string. You can use these format specifiers with the following data types:

Type %p %P
JSON

JSON input:

JSON '
{
  "month": 10,
  "year": 2019
}
'

Produces a one-line printable string representing JSON:

{"month":10,"year":2019}

JSON input:

JSON '
{
  "month": 10,
  "year": 2019
}
'

Produces a multi-line printable string representing JSON:

{
  "month": 10,
  "year": 2019
}
%t and %T behavior

The %t and %T format specifiers are defined for all types. The width, precision, and flags act as they do for %s: the width is the minimum width and the STRING will be padded to that size, and precision is the maximum width of content to show and the STRING will be truncated to that size, prior to padding to width.

The %t specifier is always meant to be a readable form of the value.

The %T specifier is always a valid SQL literal of a similar type, such as a wider numeric type. The literal will not include casts or a type name, except for the special case of non-finite floating point values.

The STRING is formatted as follows:

Type %t %T
NULL of any type NULL NULL
INT64
123 123
NUMERIC 123.0 (always with .0) NUMERIC "123.0"
FLOAT64 123.0 (always with .0)
123e+10
inf
-inf
NaN
123.0 (always with .0)
123e+10
CAST("inf" AS <type>)
CAST("-inf" AS <type>)
CAST("nan" AS <type>)
STRING unquoted string value quoted string literal
BYTES unquoted escaped bytes
e.g. abc\x01\x02
quoted bytes literal
e.g. b"abc\x01\x02"
DATE 2011-02-03 DATE "2011-02-03"
TIMESTAMP 2011-02-03 04:05:06+00 TIMESTAMP "2011-02-03 04:05:06+00"
INTERVAL 1-2 3 4:5:6.789 INTERVAL "1-2 3 4:5:6.789" YEAR TO SECOND
ARRAY [value, value, ...]
where values are formatted with %t
[value, value, ...]
where values are formatted with %T
STRUCT (value, value, ...)
where fields are formatted with %t
(value, value, ...)
where fields are formatted with %T

Special cases:
Zero fields: STRUCT()
One field: STRUCT(value)

JSON one-line printable string representing JSON.
{"name":"apple","stock":3}
one-line printable string representing a JSON literal.
JSON '{"name":"apple","stock":3}'
Error conditions

If a format specifier is invalid, or is not compatible with the related argument type, or the wrong number or arguments are provided, then an error is produced. For example, the following <format_string> expressions are invalid:

FORMAT('%s', 1)
FORMAT('%')
NULL argument handling

A NULL format string results in a NULL output STRING. Any other arguments are ignored in this case.

The function generally produces a NULL value if a NULL argument is present. For example, FORMAT('%i', NULL_expression) produces a NULL STRING as output.

However, there are some exceptions: if the format specifier is %t or %T (both of which produce STRINGs that effectively match CAST and literal value semantics), a NULL value produces 'NULL' (without the quotes) in the result STRING. For example, the function:

FORMAT('00-%t-00', NULL_expression);

Returns

00-NULL-00
Additional semantic rules

FLOAT64 values can be +/-inf or NaN. When an argument has one of those values, the result of the format specifiers %f, %F, %e, %E, %g, %G, and %t are inf, -inf, or nan (or the same in uppercase) as appropriate. This is consistent with how BigQuery casts these values to STRING. For %T, BigQuery returns quoted strings for FLOAT64 values that don't have non-string literal representations.

FROM_BASE32

FROM_BASE32(string_expr)

Description

Converts the base32-encoded input string_expr into BYTES format. To convert BYTES to a base32-encoded STRING, use TO_BASE32.

Return type

BYTES

Example

SELECT FROM_BASE32('MFRGGZDF74======') AS byte_data;

-- Note that the result of FROM_BASE32 is of type BYTES, displayed as a base64-encoded string.
+-----------+
| byte_data |
+-----------+
| YWJjZGX/  |
+-----------+

FROM_BASE64

FROM_BASE64(string_expr)

Description

Converts the base64-encoded input string_expr into BYTES format. To convert BYTES to a base64-encoded STRING, use TO_BASE64.

There are several base64 encodings in common use that vary in exactly which alphabet of 65 ASCII characters are used to encode the 64 digits and padding. See RFC 4648 for details. This function expects the alphabet [A-Za-z0-9+/=].

Return type

BYTES

Example

SELECT FROM_BASE64('/+A=') AS byte_data;

-- Note that the result of FROM_BASE64 is of type BYTES, displayed as a base64-encoded string.
+-----------+
| byte_data |
+-----------+
| /+A=      |
+-----------+

To work with an encoding using a different base64 alphabet, you might need to compose FROM_BASE64 with the REPLACE function. For instance, the base64url url-safe and filename-safe encoding commonly used in web programming uses -_= as the last characters rather than +/=. To decode a base64url-encoded string, replace - and _ with + and / respectively.

SELECT FROM_BASE64(REPLACE(REPLACE('_-A=', '-', '+'), '_', '/')) AS binary;

-- Note that the result of FROM_BASE64 is of type BYTES, displayed as a base64-encoded string.
+--------+
| binary |
+--------+
| /+A=   |
+--------+

FROM_HEX

FROM_HEX(string)

Description

Converts a hexadecimal-encoded STRING into BYTES format. Returns an error if the input STRING contains characters outside the range (0..9, A..F, a..f). The lettercase of the characters does not matter. If the input STRING has an odd number of characters, the function acts as if the input has an additional leading 0. To convert BYTES to a hexadecimal-encoded STRING, use TO_HEX.

Return type

BYTES

Example

WITH Input AS (
  SELECT '00010203aaeeefff' AS hex_str UNION ALL
  SELECT '0AF' UNION ALL
  SELECT '666f6f626172'
)
SELECT hex_str, FROM_HEX(hex_str) AS bytes_str
FROM Input;

-- Note that the result of FROM_HEX is of type BYTES, displayed as a base64-encoded string.
+------------------+--------------+
| hex_str          | bytes_str    |
+------------------+--------------+
| 0AF              | AAECA6ru7/8= |
| 00010203aaeeefff | AK8=         |
| 666f6f626172     | Zm9vYmFy     |
+------------------+--------------+

INITCAP

INITCAP(value[, delimiters])

Description

Takes a STRING and returns it with the first character in each word in uppercase and all other characters in lowercase. Non-alphabetic characters remain the same.

delimiters is an optional string argument that is used to override the default set of characters used to separate words. If delimiters is not specified, it defaults to the following characters:
<whitespace> [ ] ( ) { } / | \ < > ! ? @ " ^ # $ & ~ _ , . : ; * % + -

If value or delimiters is NULL, the function returns NULL.

Return type

STRING

Examples

WITH example AS
(
  SELECT 'Hello World-everyone!' AS value UNION ALL
  SELECT 'tHe dog BARKS loudly+friendly' AS value UNION ALL
  SELECT 'apples&oranges;&pears' AS value UNION ALL
  SELECT 'καθίσματα ταινιών' AS value
)
SELECT value, INITCAP(value) AS initcap_value FROM example

+-------------------------------+-------------------------------+
| value                         | initcap_value                 |
+-------------------------------+-------------------------------+
| Hello World-everyone!         | Hello World-Everyone!         |
| tHe dog BARKS loudly+friendly | The Dog Barks Loudly+Friendly |
| apples&oranges;&pears         | Apples&Oranges;&Pears         |
| καθίσματα ταινιών             | Καθίσματα Ταινιών             |
+-------------------------------+-------------------------------+

WITH example AS
(
  SELECT 'hello WORLD!' AS value, '' AS delimiters UNION ALL
  SELECT 'καθίσματα ταιντιώ@ν' AS value, 'τ@' AS delimiters UNION ALL
  SELECT 'Apples1oranges2pears' AS value, '12' AS delimiters UNION ALL
  SELECT 'tHisEisEaESentence' AS value, 'E' AS delimiters
)
SELECT value, delimiters, INITCAP(value, delimiters) AS initcap_value FROM example;

+----------------------+------------+----------------------+
| value                | delimiters | initcap_value        |
+----------------------+------------+----------------------+
| hello WORLD!         |            | Hello world!         |
| καθίσματα ταιντιώ@ν  | τ@         | ΚαθίσματΑ τΑιντΙώ@Ν  |
| Apples1oranges2pears | 12         | Apples1Oranges2Pears |
| tHisEisEaESentence   | E          | ThisEIsEAESentence   |
+----------------------+------------+----------------------+

INSTR

INSTR(source_value, search_value[, position[, occurrence]])

Description

Returns the lowest 1-based index of search_value in source_value. 0 is returned when no match is found. source_value and search_value must be the same type, either STRING or BYTES.

If position is specified, the search starts at this position in source_value, otherwise it starts at the beginning of source_value. If position is negative, the function searches backwards from the end of source_value, with -1 indicating the last character. position cannot be 0.

If occurrence is specified, the search returns the position of a specific instance of search_value in source_value, otherwise it returns the index of the first occurrence. If occurrence is greater than the number of matches found, 0 is returned. For occurrence > 1, the function searches for overlapping occurrences, in other words, the function searches for additional occurrences beginning with the second character in the previous occurrence. occurrence cannot be 0 or negative.

This function supports specifying collation.

Return type

INT64

Examples

WITH example AS
(SELECT 'banana' as source_value, 'an' as search_value, 1 as position, 1 as
occurrence UNION ALL
SELECT 'banana' as source_value, 'an' as search_value, 1 as position, 2 as
occurrence UNION ALL
SELECT 'banana' as source_value, 'an' as search_value, 1 as position, 3 as
occurrence UNION ALL
SELECT 'banana' as source_value, 'an' as search_value, 3 as position, 1 as
occurrence UNION ALL
SELECT 'banana' as source_value, 'an' as search_value, -1 as position, 1 as
occurrence UNION ALL
SELECT 'banana' as source_value, 'an' as search_value, -3 as position, 1 as
occurrence UNION ALL
SELECT 'banana' as source_value, 'ann' as search_value, 1 as position, 1 as
occurrence UNION ALL
SELECT 'helloooo' as source_value, 'oo' as search_value, 1 as position, 1 as
occurrence UNION ALL
SELECT 'helloooo' as source_value, 'oo' as search_value, 1 as position, 2 as
occurrence
)
SELECT source_value, search_value, position, occurrence, INSTR(source_value,
search_value, position, occurrence) AS instr
FROM example;

+--------------+--------------+----------+------------+-------+
| source_value | search_value | position | occurrence | instr |
+--------------+--------------+----------+------------+-------+
| banana       | an           | 1        | 1          | 2     |
| banana       | an           | 1        | 2          | 4     |
| banana       | an           | 1        | 3          | 0     |
| banana       | an           | 3        | 1          | 4     |
| banana       | an           | -1       | 1          | 4     |
| banana       | an           | -3       | 1          | 4     |
| banana       | ann          | 1        | 1          | 0     |
| helloooo     | oo           | 1        | 1          | 5     |
| helloooo     | oo           | 1        | 2          | 6     |
+--------------+--------------+----------+------------+-------+

LEFT

LEFT(value, length)

Description

Returns a STRING or BYTES value that consists of the specified number of leftmost characters or bytes from value. The length is an INT64 that specifies the length of the returned value. If value is of type BYTES, length is the number of leftmost bytes to return. If value is STRING, length is the number of leftmost characters to return.

If length is 0, an empty STRING or BYTES value will be returned. If length is negative, an error will be returned. If length exceeds the number of characters or bytes from value, the original value will be returned.

Return type

STRING or BYTES

Examples

WITH examples AS
(SELECT 'apple' as example
UNION ALL
SELECT 'banana' as example
UNION ALL
SELECT 'абвгд' as example
)
SELECT example, LEFT(example, 3) AS left_example
FROM examples;

+---------+--------------+
| example | left_example |
+---------+--------------+
| apple   | app          |
| banana  | ban          |
| абвгд   | абв          |
+---------+--------------+
WITH examples AS
(SELECT b'apple' as example
UNION ALL
SELECT b'banana' as example
UNION ALL
SELECT b'\xab\xcd\xef\xaa\xbb' as example
)
SELECT example, LEFT(example, 3) AS left_example
FROM examples;

-- Note that the result of LEFT is of type BYTES, displayed as a base64-encoded string.
+----------+--------------+
| example  | left_example |
+----------+--------------+
| YXBwbGU= | YXBw         |
| YmFuYW5h | YmFu         |
| q83vqrs= | q83v         |
+----------+--------------+

LENGTH

LENGTH(value)

Description

Returns the length of the STRING or BYTES value. The returned value is in characters for STRING arguments and in bytes for the BYTES argument.

Return type

INT64

Examples


WITH example AS
  (SELECT 'абвгд' AS characters)

SELECT
  characters,
  LENGTH(characters) AS string_example,
  LENGTH(CAST(characters AS BYTES)) AS bytes_example
FROM example;

+------------+----------------+---------------+
| characters | string_example | bytes_example |
+------------+----------------+---------------+
| абвгд      |              5 |            10 |
+------------+----------------+---------------+

LPAD

LPAD(original_value, return_length[, pattern])

Description

Returns a STRING or BYTES value that consists of original_value prepended with pattern. The return_length is an INT64 that specifies the length of the returned value. If original_value is of type BYTES, return_length is the number of bytes. If original_value is of type STRING, return_length is the number of characters.

The default value of pattern is a blank space.

Both original_value and pattern must be the same data type.

If return_length is less than or equal to the original_value length, this function returns the original_value value, truncated to the value of return_length. For example, LPAD('hello world', 7); returns 'hello w'.

If original_value, return_length, or pattern is NULL, this function returns NULL.

This function returns an error if:

  • return_length is negative
  • pattern is empty

Return type

STRING or BYTES

Examples

SELECT t, len, FORMAT('%T', LPAD(t, len)) AS LPAD FROM UNNEST([
  STRUCT('abc' AS t, 5 AS len),
  ('abc', 2),
  ('例子', 4)
]);

+------+-----+----------+
| t    | len | LPAD     |
|------|-----|----------|
| abc  | 5   | "  abc"  |
| abc  | 2   | "ab"     |
| 例子  | 4   | "  例子" |
+------+-----+----------+
SELECT t, len, pattern, FORMAT('%T', LPAD(t, len, pattern)) AS LPAD FROM UNNEST([
  STRUCT('abc' AS t, 8 AS len, 'def' AS pattern),
  ('abc', 5, '-'),
  ('例子', 5, '中文')
]);

+------+-----+---------+--------------+
| t    | len | pattern | LPAD         |
|------|-----|---------|--------------|
| abc  | 8   | def     | "defdeabc"   |
| abc  | 5   | -       | "--abc"      |
| 例子  | 5   | 中文    | "中文中例子"   |
+------+-----+---------+--------------+
SELECT FORMAT('%T', t) AS t, len, FORMAT('%T', LPAD(t, len)) AS LPAD FROM UNNEST([
  STRUCT(b'abc' AS t, 5 AS len),
  (b'abc', 2),
  (b'\xab\xcd\xef', 4)
]);

+-----------------+-----+------------------+
| t               | len | LPAD             |
|-----------------|-----|------------------|
| b"abc"          | 5   | b"  abc"         |
| b"abc"          | 2   | b"ab"            |
| b"\xab\xcd\xef" | 4   | b" \xab\xcd\xef" |
+-----------------+-----+------------------+
SELECT
  FORMAT('%T', t) AS t,
  len,
  FORMAT('%T', pattern) AS pattern,
  FORMAT('%T', LPAD(t, len, pattern)) AS LPAD
FROM UNNEST([
  STRUCT(b'abc' AS t, 8 AS len, b'def' AS pattern),
  (b'abc', 5, b'-'),
  (b'\xab\xcd\xef', 5, b'\x00')
]);

+-----------------+-----+---------+-------------------------+
| t               | len | pattern | LPAD                    |
|-----------------|-----|---------|-------------------------|
| b"abc"          | 8   | b"def"  | b"defdeabc"             |
| b"abc"          | 5   | b"-"    | b"--abc"                |
| b"\xab\xcd\xef" | 5   | b"\x00" | b"\x00\x00\xab\xcd\xef" |
+-----------------+-----+---------+-------------------------+

LOWER

LOWER(value)

Description

For STRING arguments, returns the original string with all alphabetic characters in lowercase. Mapping between lowercase and uppercase is done according to the Unicode Character Database without taking into account language-specific mappings.

For BYTES arguments, the argument is treated as ASCII text, with all bytes greater than 127 left intact.

Return type

STRING or BYTES

Examples


WITH items AS
  (SELECT
    'FOO' as item
  UNION ALL
  SELECT
    'BAR' as item
  UNION ALL
  SELECT
    'BAZ' as item)

SELECT
  LOWER(item) AS example
FROM items;

+---------+
| example |
+---------+
| foo     |
| bar     |
| baz     |
+---------+

LTRIM

LTRIM(value1[, value2])

Description

Identical to TRIM, but only removes leading characters.

Return type

STRING or BYTES

Examples

WITH items AS
  (SELECT '   apple   ' as item
  UNION ALL
  SELECT '   banana   ' as item
  UNION ALL
  SELECT '   orange   ' as item)

SELECT
  CONCAT('#', LTRIM(item), '#') as example
FROM items;

+-------------+
| example     |
+-------------+
| #apple   #  |
| #banana   # |
| #orange   # |
+-------------+
WITH items AS
  (SELECT '***apple***' as item
  UNION ALL
  SELECT '***banana***' as item
  UNION ALL
  SELECT '***orange***' as item)

SELECT
  LTRIM(item, '*') as example
FROM items;

+-----------+
| example   |
+-----------+
| apple***  |
| banana*** |
| orange*** |
+-----------+
WITH items AS
  (SELECT 'xxxapplexxx' as item
  UNION ALL
  SELECT 'yyybananayyy' as item
  UNION ALL
  SELECT 'zzzorangezzz' as item
  UNION ALL
  SELECT 'xyzpearxyz' as item)
SELECT
  LTRIM(item, 'xyz') as example
FROM items;

+-----------+
| example   |
+-----------+
| applexxx  |
| bananayyy |
| orangezzz |
| pearxyz   |
+-----------+

NORMALIZE

NORMALIZE(value[, normalization_mode])

Description

Takes a string value and returns it as a normalized string. If you do not provide a normalization mode, NFC is used.

Normalization is used to ensure that two strings are equivalent. Normalization is often used in situations in which two strings render the same on the screen but have different Unicode code points.

NORMALIZE supports four optional normalization modes:

ValueNameDescription
NFC Normalization Form Canonical Composition Decomposes and recomposes characters by canonical equivalence.
NFKC Normalization Form Compatibility Composition Decomposes characters by compatibility, then recomposes them by canonical equivalence.
NFD Normalization Form Canonical Decomposition Decomposes characters by canonical equivalence, and multiple combining characters are arranged in a specific order.
NFKD Normalization Form Compatibility Decomposition Decomposes characters by compatibility, and multiple combining characters are arranged in a specific order.

Return type

STRING

Examples

SELECT a, b, a = b as normalized
FROM (SELECT NORMALIZE('\u00ea') as a, NORMALIZE('\u0065\u0302') as b);

+---+---+------------+
| a | b | normalized |
+---+---+------------+
| ê | ê | true       |
+---+---+------------+

The following example normalizes different space characters.

WITH EquivalentNames AS (
  SELECT name
  FROM UNNEST([
      'Jane\u2004Doe',
      'John\u2004Smith',
      'Jane\u2005Doe',
      'Jane\u2006Doe',
      'John Smith']) AS name
)
SELECT
  NORMALIZE(name, NFKC) AS normalized_name,
  COUNT(*) AS name_count
FROM EquivalentNames
GROUP BY 1;

+-----------------+------------+
| normalized_name | name_count |
+-----------------+------------+
| John Smith      | 2          |
| Jane Doe        | 3          |
+-----------------+------------+

NORMALIZE_AND_CASEFOLD

NORMALIZE_AND_CASEFOLD(value[, normalization_mode])

Description

Takes a string value and returns it as a normalized string. If you do not provide a normalization mode, NFC is used.

Normalization is used to ensure that two strings are equivalent. Normalization is often used in situations in which two strings render the same on the screen but have different Unicode code points.

Case folding is used for the caseless comparison of strings. If you need to compare strings and case should not be considered, use NORMALIZE_AND_CASEFOLD, otherwise use NORMALIZE.

NORMALIZE_AND_CASEFOLD supports four optional normalization modes:

ValueNameDescription
NFC Normalization Form Canonical Composition Decomposes and recomposes characters by canonical equivalence.
NFKC Normalization Form Compatibility Composition Decomposes characters by compatibility, then recomposes them by canonical equivalence.
NFD Normalization Form Canonical Decomposition Decomposes characters by canonical equivalence, and multiple combining characters are arranged in a specific order.
NFKD Normalization Form Compatibility Decomposition Decomposes characters by compatibility, and multiple combining characters are arranged in a specific order.

Return type

STRING

Examples

SELECT
  a, b,
  NORMALIZE(a) = NORMALIZE(b) as normalized,
  NORMALIZE_AND_CASEFOLD(a) = NORMALIZE_AND_CASEFOLD(b) as normalized_with_case_folding
FROM (SELECT 'The red barn' AS a, 'The Red Barn' AS b);

+--------------+--------------+------------+------------------------------+
| a            | b            | normalized | normalized_with_case_folding |
+--------------+--------------+------------+------------------------------+
| The red barn | The Red Barn | false      | true                         |
+--------------+--------------+------------+------------------------------+
WITH Strings AS (
  SELECT '\u2168' AS a, 'IX' AS b UNION ALL
  SELECT '\u0041\u030A', '\u00C5'
)
SELECT a, b,
  NORMALIZE_AND_CASEFOLD(a, NFD)=NORMALIZE_AND_CASEFOLD(b, NFD) AS nfd,
  NORMALIZE_AND_CASEFOLD(a, NFC)=NORMALIZE_AND_CASEFOLD(b, NFC) AS nfc,
  NORMALIZE_AND_CASEFOLD(a, NFKD)=NORMALIZE_AND_CASEFOLD(b, NFKD) AS nkfd,
  NORMALIZE_AND_CASEFOLD(a, NFKC)=NORMALIZE_AND_CASEFOLD(b, NFKC) AS nkfc
FROM Strings;

+---+----+-------+-------+------+------+
| a | b  | nfd   | nfc   | nkfd | nkfc |
+---+----+-------+-------+------+------+
| Ⅸ | IX | false | false | true | true |
| Å | Å  | true  | true  | true | true |
+---+----+-------+-------+------+------+

OCTET_LENGTH

OCTET_LENGTH(value)

Alias for BYTE_LENGTH.

REGEXP_CONTAINS

REGEXP_CONTAINS(value, regexp)

Description

Returns TRUE if value is a partial match for the regular expression, regexp.

If the regexp argument is invalid, the function returns an error.

You can search for a full match by using ^ (beginning of text) and $ (end of text). Due to regular expression operator precedence, it is good practice to use parentheses around everything between ^ and $.

Return type

BOOL

Examples

SELECT
  email,
  REGEXP_CONTAINS(email, r'@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+') AS is_valid
FROM
  (SELECT
    ['', '', 'www.example.net']
    AS addresses),
  UNNEST(addresses) AS email;

+-----------------+----------+
| email           | is_valid |
+-----------------+----------+
|  | true     |
|  | true     |
| www.example.net | false    |
+-----------------+----------+

-- Performs a full match, using ^ and $. Due to regular expression operator
-- precedence, it is good practice to use parentheses around everything between ^
-- and $.
SELECT
  email,
  REGEXP_CONTAINS(email, r'^([\w.+-]+@foo\.com|[\w.+-]+@bar\.org)$')
    AS valid_email_address,
  REGEXP_CONTAINS(email, r'^[\w.+-]+@foo\.com|[\w.+-]+@bar\.org$')
    AS without_parentheses
FROM
  (SELECT
    ['', 'puter', '', '!', '']
    AS addresses),
  UNNEST(addresses) AS email;

+----------------+---------------------+---------------------+
| email          | valid_email_address | without_parentheses |
+----------------+---------------------+---------------------+
|       | true                | true                |
| puter | false               | true                |
|       | true                | true                |
| !     | false               | true                |
|       | false               | false               |
+----------------+---------------------+---------------------+
REGEXP_EXTRACT(value, regexp[, position[, occurrence]])

Description

Returns the substring in value that matches the regular expression, regexp. Returns NULL if there is no match.

If the regular expression contains a capturing group, the function returns the substring that is matched by that capturing group. If the expression does not contain a capturing group, the function returns the entire matching substring.

If position is specified, the search starts at this position in value, otherwise it starts at the beginning of value. The position must be a positive integer and cannot be 0. If position is greater than the length of value, NULL is returned.

If occurrence is specified, the search returns a specific occurrence of the regexp in value, otherwise returns the first match. If occurrence is greater than the number of matches found, NULL is returned. For occurrence > 1, the function searches for additional occurrences beginning with the character following the previous occurrence.

Returns an error if:

  • The regular expression is invalid
  • The regular expression has more than one capturing group
  • The position is not a positive integer
  • The occurrence is not a positive integer

Return type

STRING or BYTES

Examples

WITH email_addresses AS
  (SELECT '' as email
  UNION ALL
  SELECT '' as email
  UNION ALL
  SELECT '' as email)

SELECT
  REGEXP_EXTRACT(email, r'^[a-zA-Z0-9_.+-]+')
  AS user_name
FROM email_addresses;

+-----------+
| user_name |
+-----------+
| foo       |
| bar       |
| baz       |
+-----------+
WITH email_addresses AS
  (SELECT '' as email
  UNION ALL
  SELECT '' as email
  UNION ALL
  SELECT '' as email)

SELECT
  REGEXP_EXTRACT(email, r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.([a-zA-Z0-9-.]+$)')
  AS top_level_domain
FROM email_addresses;

+------------------+
| top_level_domain |
+------------------+
| com              |
| org              |
| net              |
+------------------+
WITH example AS
(SELECT 'Hello Helloo and Hellooo' AS value, 'H?ello+' AS regex, 1 as position,
1 AS occurrence UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 1, 2 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 1, 3 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 1, 4 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 2, 1 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 3, 1 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 3, 2 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 3, 3 UNION ALL
SELECT 'Hello Helloo and Hellooo', 'H?ello+', 20, 1 UNION ALL
SELECT 'cats&dogs&rabbits' ,'\\w+&', 1, 2 UNION ALL
SELECT 'cats&dogs&rabbits', '\\w+&', 2, 3
)
SELECT value, regex, position, occurrence, REGEXP_EXTRACT(value, regex,
position, occurrence) AS regexp_value FROM example;

+--------------------------+---------+----------+------------+--------------+
| value                    | regex   | position | occurrence | regexp_value |
+--------------------------+---------+----------+------------+--------------+
| Hello Helloo and Hellooo | H?ello+ | 1        | 1          | Hello        |
| Hello Helloo and Hellooo | H?ello+ | 1        | 2          | Helloo       |
| Hello Helloo and Hellooo | H?ello+ | 1        | 3          | Hellooo      |
| Hello Helloo and Hellooo | H?ello+ | 1        | 4          | NULL         |
| Hello Helloo and Hellooo | H?ello+ | 2        | 1          | ello         |
| Hello Helloo and Hellooo | H?ello+ | 3        | 1          | Helloo       |
| Hello Helloo and Hellooo | H?ello+ | 3        | 2          | Hellooo      |
| Hello Helloo and Hellooo | H?ello+ | 3        | 3          | NULL         |
| Hello Helloo and Hellooo | H?ello+ | 20       | 1          | NULL         |
| cats&dogs&rabbits        | \w+&    | 1        | 2          | dogs&        |
| cats&dogs&rabbits        | \w+&    | 2        | 3          | NULL         |
+--------------------------+---------+----------+------------+--------------+
REGEXP_EXTRACT_ALL(value, regexp)

Description

Returns an array of all substrings of value that match the regular expression, regexp.

The REGEXP_EXTRACT_ALL function only returns non-overlapping matches. For example, using this function to extract ana from banana returns only one substring, not two.

Return type

An ARRAY of either STRINGs or BYTES

Examples

WITH code_markdown AS
  (SELECT 'Try `function(x)` or `function(y)`' as code)

SELECT
  REGEXP_EXTRACT_ALL(code, '`(.+?)`') AS example
FROM code_markdown;

+----------------------------+
| example                    |
+----------------------------+
| [function(x), function(y)] |
+----------------------------+

REGEXP_INSTR

REGEXP_INSTR(source_value, regexp [, position[, occurrence, [occurrence_position]]])

Description

Returns the lowest 1-based index of a regular expression, regexp, in source_value. Returns 0 when no match is found or the regular expression is empty. Returns an error if the regular expression is invalid or has more than one capturing group. source_value and regexp must be the same type, either STRING or BYTES.

If position is specified, the search starts at this position in source_value, otherwise it starts at the beginning of source_value. position cannot be 0 or negative.

If occurrence is specified, the search returns the position of a specific instance of regexp in source_value, otherwise it returns the index of the first occurrence. If occurrence is greater than the number of matches found, 0 is returned. For occurrence > 1, the function searches for overlapping occurrences, in other words, the function searches for additional occurrences beginning with the second character in the previous occurrence. occurrence cannot be 0 or negative.

You can optionally use occurrence_position to specify where a position in relation to an occurrence starts. Your choices are: + 0: Returns the beginning position of the occurrence. + 1: Returns the first position following the end of the occurrence. If the end of the occurrence is also the end of the input, one off the end of the occurrence is returned. For example, length of a string + 1.

Return type

INT64

Examples

WITH example AS (
  SELECT '' AS source_value, '@[^.]*' AS regexp UNION ALL
  SELECT '', '@[^.]*' UNION ALL
  SELECT '', '@[^.]*' UNION ALL
  SELECT 'abc.com', '@[^.]*')
SELECT source_value, regexp, REGEXP_INSTR(source_value, regexp) AS instr
FROM example;

+---------------+--------+-------+
| source_value  | regexp | instr |
+---------------+--------+-------+
|   | @[^.]* | 3     |
|    | @[^.]* | 3     |
|  | @[^.]* | 4     |
| abc.com       | @[^.]* | 0     |
+---------------+--------+-------+
WITH example AS (
  SELECT ' ' AS source_value, '@[^.]*' AS regexp, 1 AS position UNION ALL
  SELECT ' ', '@[^.]*', 2 UNION ALL
  SELECT ' ', '@[^.]*', 3 UNION ALL
  SELECT ' ', '@[^.]*', 4)
SELECT
  source_value, regexp, position,
  REGEXP_INSTR(source_value, regexp, position) AS instr
FROM example;

+-------------------------+--------+----------+-------+
| source_value            | regexp | position | instr |
+-------------------------+--------+----------+-------+
|   | @[^.]* | 1        | 2     |
|   | @[^.]* | 2        | 2     |
|   | @[^.]* | 3        | 14    |
|   | @[^.]* | 4        | 14    |
+-------------------------+--------+----------+-------+
WITH example AS (
  SELECT '  ' AS source_value,
         '@[^.]*' AS regexp, 1 AS position, 1 AS occurrence UNION ALL
  SELECT '  ', '@[^.]*', 1, 2 UNION ALL
  SELECT '  ', '@[^.]*', 1, 3)
SELECT
  source_value, regexp, position, occurrence,
  REGEXP_INSTR(source_value, regexp, position, occurrence) AS instr
FROM example;

+-------------------------------------+--------+----------+------------+-------+
| source_value                        | regexp | position | occurrence | instr |
+-------------------------------------+--------+----------+------------+-------+
|    | @[^.]* | 1        | 1          | 2     |
|    | @[^.]* | 1        | 2          | 14    |
|    | @[^.]* | 1        | 3          | 26    |
+-------------------------------------+--------+----------+------------+-------+
WITH example AS (
  SELECT '' AS source_value, '@[^.]*' AS regexp,
         1 AS position, 1 AS occurrence, 0 AS o_position UNION ALL
  SELECT '', '@[^.]*', 1, 1, 1)
SELECT
  source_value, regexp, position, occurrence, o_position,
  REGEXP_INSTR(source_value, regexp, position, occurrence, o_position) AS instr
FROM example;

+--------------+--------+----------+------------+------------+-------+
| source_value | regexp | position | occurrence | o_position | instr |
+--------------+--------+----------+------------+------------+-------+
|   | @[^.]* | 1        | 1          | 0          | 2     |
|   | @[^.]* | 1        | 1          | 1          | 8     |
+--------------+--------+----------+------------+------------+-------+

REGEXP_REPLACE

REGEXP_REPLACE(value, regexp, replacement)

Description

Returns a STRING where all substrings of value that match regular expression regexp are replaced with replacement.

You can use backslashed-escaped digits (\1 to \9) within the replacement argument to insert text matching the corresponding parenthesized group in the regexp pattern. Use \0 to refer to the entire matching text.

To add a backslash in your regular expression, you must first escape it. For example, SELECT REGEXP_REPLACE('abc', 'b(.)', 'X\\1'); returns aXc. You can also use raw strings to remove one layer of escaping, for example SELECT REGEXP_REPLACE('abc', 'b(.)', r'X\1');.

The REGEXP_REPLACE function only replaces non-overlapping matches. For example, replacing ana within banana results in only one replacement, not two.

If the regexp argument is not a valid regular expression, this function returns an error.

Return type

STRING or BYTES

Examples

WITH markdown AS
  (SELECT '# Heading' as heading
  UNION ALL
  SELECT '# Another heading' as heading)

SELECT
  REGEXP_REPLACE(heading, r'^# ([a-zA-Z0-9\s]+$)', '<h2>\\1</h2>')
  AS html
FROM markdown;

+--------------------------+
| html                     |
+--------------------------+
| <h2>Heading</h2>         |
| <h2>Another heading</h2> |
+--------------------------+

REGEXP_SUBSTR

REGEXP_SUBSTR(value, regexp[, position[, occurrence]])

Description

Synonym for REGEXP_EXTRACT.

Return type

STRING or BYTES

Examples

WITH example AS
(SELECT 'Hello World Helloo' AS value, 'H?ello+' AS regex, 1 AS position, 1 AS
occurrence
)
SELECT value, regex, position, occurrence, REGEXP_SUBSTR(value, regex,
position, occurrence) AS regexp_value FROM example;

+--------------------+---------+----------+------------+--------------+
| value              | regex   | position | occurrence | regexp_value |
+--------------------+---------+----------+------------+--------------+
| Hello World Helloo | H?ello+ | 1        | 1          | Hello        |
+--------------------+---------+----------+------------+--------------+

REPLACE

REPLACE(original_value, from_value, to_value)

Description

Replaces all occurrences of from_value with to_value in original_value. If from_value is empty, no replacement is made.

This function supports specifying collation.

Return type

STRING or BYTES

Examples

WITH desserts AS
  (SELECT 'apple pie' as dessert
  UNION ALL
  SELECT 'blackberry pie' as dessert
  UNION ALL
  SELECT 'cherry pie' as dessert)

SELECT
  REPLACE (dessert, 'pie', 'cobbler') as example
FROM desserts;

+--------------------+
| example            |
+--------------------+
| apple cobbler      |
| blackberry cobbler |
| cherry cobbler     |
+--------------------+

REPEAT

REPEAT(original_value, repetitions)

Description

Returns a STRING or BYTES value that consists of original_value, repeated. The repetitions parameter specifies the number of times to repeat original_value. Returns NULL if either original_value or repetitions are NULL.

This function returns an error if the repetitions value is negative.

Return type

STRING or BYTES

Examples

SELECT t, n, REPEAT(t, n) AS REPEAT FROM UNNEST([
  STRUCT('abc' AS t, 3 AS n),
  ('例子', 2),
  ('abc', null),
  (null, 3)
]);

+------+------+-----------+
| t    | n    | REPEAT    |
|------|------|-----------|
| abc  | 3    | abcabcabc |
| 例子 | 2    | 例子例子  |
| abc  | NULL | NULL      |
| NULL | 3    | NULL      |
+------+------+-----------+

REVERSE

REVERSE(value)

Description

Returns the reverse of the input STRING or BYTES.

Return type

STRING or BYTES

Examples

WITH example AS (
  SELECT 'foo' AS sample_string, b'bar' AS sample_bytes UNION ALL
  SELECT 'абвгд' AS sample_string, b'123' AS sample_bytes
)
SELECT
  sample_string,
  REVERSE(sample_string) AS reverse_string,
  sample_bytes,
  REVERSE(sample_bytes) AS reverse_bytes
FROM example;

+---------------+----------------+--------------+---------------+
| sample_string | reverse_string | sample_bytes | reverse_bytes |
+---------------+----------------+--------------+---------------+
| foo           | oof            | bar          | rab           |
| абвгд         | дгвба          | 123          | 321           |
+---------------+----------------+--------------+---------------+

RIGHT

RIGHT(value, length)

Description

Returns a STRING or BYTES value that consists of the specified number of rightmost characters or bytes from value. The length is an INT64 that specifies the length of the returned value. If value is BYTES, length is the number of rightmost bytes to return. If value is STRING, length is the number of rightmost characters to return.

If length is 0, an empty STRING or BYTES value will be returned. If length is negative, an error will be returned. If length exceeds the number of characters or bytes from value, the original value will be returned.

Return type

STRING or BYTES

Examples

WITH examples AS
(SELECT 'apple' as example
UNION ALL
SELECT 'banana' as example
UNION ALL
SELECT 'абвгд' as example
)
SELECT example, RIGHT(example, 3) AS right_example
FROM examples;

+---------+---------------+
| example | right_example |
+---------+---------------+
| apple   | ple           |
| banana  | ana           |
| абвгд   | вгд           |
+---------+---------------+
WITH examples AS
(SELECT b'apple' as example
UNION ALL
SELECT b'banana' as example
UNION ALL
SELECT b'\xab\xcd\xef\xaa\xbb' as example
)
SELECT example, RIGHT(example, 3) AS right_example
FROM examples;

-- Note that the result of RIGHT is of type BYTES, displayed as a base64-encoded string.
+----------+---------------+
| example  | right_example |
+----------+---------------+
| YXBwbGU= | cGxl          |
| YmFuYW5h | YW5h          |
| q83vqrs= | 76q7          |
+----------+---------------+

RPAD

RPAD(original_value, return_length[, pattern])

Description

Returns a STRING or BYTES value that consists of original_value appended with pattern. The return_length parameter is an INT64 that specifies the length of the returned value. If original_value is BYTES, return_length is the number of bytes. If original_value is STRING, return_length is the number of characters.

The default value of pattern is a blank space.

Both original_value and pattern must be the same data type.

If return_length is less than or equal to the original_value length, this function returns the original_value value, truncated to the value of return_length. For example, RPAD('hello world', 7); returns 'hello w'.

If original_value, return_length, or pattern is NULL, this function returns NULL.

This function returns an error if:

  • return_length is negative
  • pattern is empty

Return type

STRING or BYTES

Examples

SELECT t, len, FORMAT('%T', RPAD(t, len)) AS RPAD FROM UNNEST([
  STRUCT('abc' AS t, 5 AS len),
  ('abc', 2),
  ('例子', 4)
]);

+------+-----+----------+
| t    | len | RPAD     |
|------|-----|----------|
| abc  | 5   | "abc  "  |
| abc  | 2   | "ab"     |
| 例子  | 4   | "例子  " |
+------+-----+----------+
SELECT t, len, pattern, FORMAT('%T', RPAD(t, len, pattern)) AS RPAD FROM UNNEST([
  STRUCT('abc' AS t, 8 AS len, 'def' AS pattern),
  ('abc', 5, '-'),
  ('例子', 5, '中文')
]);

+------+-----+---------+--------------+
| t    | len | pattern | RPAD         |
|------|-----|---------|--------------|
| abc  | 8   | def     | "abcdefde"   |
| abc  | 5   | -       | "abc--"      |
| 例子  | 5   | 中文     | "例子中文中"  |
+------+-----+---------+--------------+
SELECT FORMAT('%T', t) AS t, len, FORMAT('%T', RPAD(t, len)) AS RPAD FROM UNNEST([
  STRUCT(b'abc' AS t, 5 AS len),
  (b'abc', 2),
  (b'\xab\xcd\xef', 4)
]);

+-----------------+-----+------------------+
| t               | len | RPAD             |
|-----------------|-----|------------------|
| b"abc"          | 5   | b"abc  "         |
| b"abc"          | 2   | b"ab"            |
| b"\xab\xcd\xef" | 4   | b"\xab\xcd\xef " |
+-----------------+-----+------------------+
SELECT
  FORMAT('%T', t) AS t,
  len,
  FORMAT('%T', pattern) AS pattern,
  FORMAT('%T', RPAD(t, len, pattern)) AS RPAD
FROM UNNEST([
  STRUCT(b'abc' AS t, 8 AS len, b'def' AS pattern),
  (b'abc', 5, b'-'),
  (b'\xab\xcd\xef', 5, b'\x00')
]);

+-----------------+-----+---------+-------------------------+
| t               | len | pattern | RPAD                    |
|-----------------|-----|---------|-------------------------|
| b"abc"          | 8   | b"def"  | b"abcdefde"             |
| b"abc"          | 5   | b"-"    | b"abc--"                |
| b"\xab\xcd\xef" | 5   | b"\x00" | b"\xab\xcd\xef\x00\x00" |
+-----------------+-----+---------+-------------------------+

RTRIM

RTRIM(value1[, value2])

Description

Identical to TRIM, but only removes trailing characters.

Return type

STRING or BYTES

Examples

WITH items AS
  (SELECT '***apple***' as item
  UNION ALL
  SELECT '***banana***' as item
  UNION ALL
  SELECT '***orange***' as item)

SELECT
  RTRIM(item, '*') as example
FROM items;

+-----------+
| example   |
+-----------+
| ***apple  |
| ***banana |
| ***orange |
+-----------+
WITH items AS
  (SELECT 'applexxx' as item
  UNION ALL
  SELECT 'bananayyy' as item
  UNION ALL
  SELECT 'orangezzz' as item
  UNION ALL
  SELECT 'pearxyz' as item)

SELECT
  RTRIM(item, 'xyz') as example
FROM items;

+---------+
| example |
+---------+
| apple   |
| banana  |
| orange  |
| pear    |
+---------+

SAFE_CONVERT_BYTES_TO_STRING

SAFE_CONVERT_BYTES_TO_STRING(value)

Description

Converts a sequence of BYTES to a STRING. Any invalid UTF-8 characters are replaced with the Unicode replacement character, U+FFFD.

Return type

STRING

Examples

The following statement returns the Unicode replacement character, �.

SELECT SAFE_CONVERT_BYTES_TO_STRING(b'\xc2') as safe_convert;

SOUNDEX

SOUNDEX(value)

Description

Returns a STRING that represents the Soundex code for value.

SOUNDEX produces a phonetic representation of a string. It indexes words by sound, as pronounced in English. It is typically used to help determine whether two strings, such as the family names Levine and Lavine, or the words to and too, have similar English-language pronunciation.

The result of the SOUNDEX consists of a letter followed by 3 digits. Non-latin characters are ignored. If the remaining string is empty after removing non-Latin characters, an empty STRING is returned.

Return type

STRING

Examples

WITH example AS (
  SELECT 'Ashcraft' AS value UNION ALL
  SELECT 'Raven' AS value UNION ALL
  SELECT 'Ribbon' AS value UNION ALL
  SELECT 'apple' AS value UNION ALL
  SELECT 'Hello world!' AS value UNION ALL
  SELECT '  H3##!@llo w00orld!' AS value UNION ALL
  SELECT '#1' AS value UNION ALL
  SELECT NULL AS value
)
SELECT value, SOUNDEX(value) AS soundex
FROM example;

+----------------------+---------+
| value                | soundex |
+----------------------+---------+
| Ashcraft             | A261    |
| Raven                | R150    |
| Ribbon               | R150    |
| apple                | a140    |
| Hello world!         | H464    |
|   H3##!@llo w00orld! | H464    |
| #1                   |         |
| NULL                 | NULL    |
+----------------------+---------+

SPLIT

SPLIT(value[, delimiter])

Description

Splits value using the delimiter argument.

For STRING, the default delimiter is the comma ,.

For BYTES, you must specify a delimiter.

Splitting on an empty delimiter produces an array of UTF-8 characters for STRING values, and an array of BYTES for BYTES values.

Splitting an empty STRING returns an ARRAY with a single empty STRING.

This function supports specifying collation.

Return type

ARRAY of type STRING or ARRAY of type BYTES

Examples

WITH letters AS
  (SELECT '' as letter_group
  UNION ALL
  SELECT 'a' as letter_group
  UNION ALL
  SELECT 'b c d' as letter_group)

SELECT SPLIT(letter_group, ' ') as example
FROM letters;

+----------------------+
| example              |
+----------------------+
| []                   |
| [a]                  |
| [b, c, d]            |
+----------------------+

STARTS_WITH

STARTS_WITH(value1, value2)

Description

Takes two STRING or BYTES values. Returns TRUE if the second value is a prefix of the first.

This function supports specifying collation.

Return type

BOOL

Examples

WITH items AS
  (SELECT 'foo' as item
  UNION ALL
  SELECT 'bar' as item
  UNION ALL
  SELECT 'baz' as item)

SELECT
  STARTS_WITH(item, 'b') as example
FROM items;

+---------+
| example |
+---------+
|   False |
|    True |
|    True |
+---------+

STRPOS

STRPOS(value1, value2)

Description

Takes two STRING or BYTES values. Returns the 1-based index of the first occurrence of value2 inside value1. Returns 0 if value2 is not found.

This function supports specifying collation.

Return type

INT64

Examples

WITH email_addresses AS
  (SELECT
    '' AS email_address
  UNION ALL
  SELECT
    '' AS email_address
  UNION ALL
  SELECT
    '' AS email_address
  UNION ALL
  SELECT
    'quxexample.com' AS email_address)

SELECT
  STRPOS(email_address, '@') AS example
FROM email_addresses;

+---------+
| example |
+---------+
|       4 |
|       7 |
|      10 |
|       0 |
+---------+

SUBSTR

SUBSTR(value, position[, length])

Description

Returns a substring of the supplied STRING or BYTES value.

The position argument is an integer specifying the starting position of the substring.

  • If position is 1, the substring starts from the first character or byte.
  • If position is 0 or less than -LENGTH(value), position is set to 1, and the substring starts from the first character or byte.
  • If position is greater than the length of value, the function produces an empty substring.
  • If position is negative, the function counts from the end of value, with -1 indicating the last character or byte.

The length argument specifies the maximum number of characters or bytes to return.

  • If length is not specified, the function produces a substring that starts at the specified position and ends at the last character or byte of value.
  • If length is 0, the function produces an empty substring.
  • If length is negative, the function produces an error.
  • The returned substring may be shorter than length, for example, when length exceeds the length of value, or when the starting position of the substring plus length is greater than the length of value.

Return type

STRING or BYTES

Examples

WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  SUBSTR(item, 2) as example
FROM items;

+---------+
| example |
+---------+
| pple    |
| anana   |
| range   |
+---------+
WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  SUBSTR(item, 2, 2) as example
FROM items;

+---------+
| example |
+---------+
| pp      |
| an      |
| ra      |
+---------+
WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  SUBSTR(item, -2) as example
FROM items;

+---------+
| example |
+---------+
| le      |
| na      |
| ge      |
+---------+
WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  SUBSTR(item, 1, 123) as example
FROM items;

+---------+
| example |
+---------+
| apple   |
| banana  |
| orange  |
+---------+
WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  SUBSTR(item, 123) as example
FROM items;

+---------+
| example |
+---------+
|         |
|         |
|         |
+---------+
WITH items AS
  (SELECT 'apple' as item
  UNION ALL
  SELECT 'banana' as item
  UNION ALL
  SELECT 'orange' as item)

SELECT
  SUBSTR(item, 123, 5) as example
FROM items;

+---------+
| example |
+---------+
|         |
|         |
|         |
+---------+

SUBSTRING

SUBSTRING(value, position[, length])

Alias for SUBSTR.

TO_BASE32

TO_BASE32(bytes_expr)

Description

Converts a sequence of BYTES into a base32-encoded STRING. To convert a base32-encoded STRING into BYTES, use FROM_BASE32.

Return type

STRING

Example

SELECT TO_BASE32(b'abcde\xFF') AS base32_string;

+------------------+
| base32_string    |
+------------------+
| MFRGGZDF74====== |
+------------------+

TO_BASE64

TO_BASE64(bytes_expr)

Description

Converts a sequence of BYTES into a base64-encoded STRING. To convert a base64-encoded STRING into BYTES, use FROM_BASE64.

There are several base64 encodings in common use that vary in exactly which alphabet of 65 ASCII characters are used to encode the 64 digits and padding. See RFC 4648 for details. This function adds padding and uses the alphabet [A-Za-z0-9+/=].

Return type

STRING

Example

SELECT TO_BASE64(b'\377\340') AS base64_string;

+---------------+
| base64_string |
+---------------+
| /+A=          |
+---------------+

To work with an encoding using a different base64 alphabet, you might need to compose TO_BASE64 with the REPLACE function. For instance, the base64url url-safe and filename-safe encoding commonly used in web programming uses -_= as the last characters rather than +/=. To encode a base64url-encoded string, replace + and / with - and _ respectively.

SELECT REPLACE(REPLACE(TO_BASE64(b'\377\340'), '+', '-'), '/', '_') as websafe_base64;

+----------------+
| websafe_base64 |
+----------------+
| _-A=           |
+----------------+

TO_CODE_POINTS

TO_CODE_POINTS(value)

Description

Takes a value and returns an array of INT64.

  • If value is a STRING, each element in the returned array represents a code point. Each code point falls within the range of [0, 0xD7FF] and [0xE000, 0x10FFFF].
  • If value is BYTES, each element in the array is an extended ASCII character value in the range of [0, 255].

To convert from an array of code points to a STRING or BYTES, see CODE_POINTS_TO_STRING or CODE_POINTS_TO_BYTES.

Return type

ARRAY of INT64

Examples

The following example gets the code points for each element in an array of words.

SELECT word, TO_CODE_POINTS(word) AS code_points
FROM UNNEST(['foo', 'bar', 'baz', 'giraffe', 'llama']) AS word;

+---------+------------------------------------+
| word    | code_points                        |
+---------+------------------------------------+
| foo     | [102, 111, 111]                    |
| bar     | [98, 97, 114]                      |
| baz     | [98, 97, 122]                      |
| giraffe | [103, 105, 114, 97, 102, 102, 101] |
| llama   | [108, 108, 97, 109, 97]            |
+---------+------------------------------------+

The following example converts integer representations of BYTES to their corresponding ASCII character values.

SELECT word, TO_CODE_POINTS(word) AS bytes_value_as_integer
FROM UNNEST([b'\x00\x01\x10\xff', b'\x66\x6f\x6f']) AS word;

+------------------+------------------------+
| word             | bytes_value_as_integer |
+------------------+------------------------+
| \x00\x01\x10\xff | [0, 1, 16, 255]        |
| foo              | [102, 111, 111]        |
+------------------+------------------------+

The following example demonstrates the difference between a BYTES result and a STRING result.

SELECT TO_CODE_POINTS(b'Ā') AS b_result, TO_CODE_POINTS('Ā') AS s_result;

+------------+----------+
| b_result   | s_result |
+------------+----------+
| [196, 128] | [256]    |
+------------+----------+

Notice that the character, Ā, is represented as a two-byte Unicode sequence. As a result, the BYTES version of TO_CODE_POINTS returns an array with two elements, while the STRING version returns an array with a single element.

TO_HEX

TO_HEX(bytes)

Description

Converts a sequence of BYTES into a hexadecimal STRING. Converts each byte in the STRING as two hexadecimal characters in the range (0..9, a..f). To convert a hexadecimal-encoded STRING to BYTES, use FROM_HEX.

Return type

STRING

Example

WITH Input AS (
  SELECT b'\x00\x01\x02\x03\xAA\xEE\xEF\xFF' AS byte_str UNION ALL
  SELECT b'foobar'
)
SELECT byte_str, TO_HEX(byte_str) AS hex_str
FROM Input;

+----------------------------------+------------------+
| byte_string                      | hex_string       |
+----------------------------------+------------------+
| \x00\x01\x02\x03\xaa\xee\xef\xff | 00010203aaeeefff |
| foobar                           | 666f6f626172     |
+----------------------------------+------------------+

TRANSLATE

TRANSLATE(expression, source_characters, target_characters)

Description

In expression, replaces each character in source_characters with the corresponding character in target_characters. All inputs must be the same type, either STRING or BYTES.

  • Each character in expression is translated at most once.
  • A character in expression that is not present in source_characters is left unchanged in expression.
  • A character in source_characters without a corresponding character in target_characters is omitted from the result.
  • A duplicate character in source_characters results in an error.

Return type

STRING or BYTES

Examples

WITH example AS (
  SELECT 'This is a cookie' AS expression, 'sco' AS source_characters, 'zku' AS
  target_characters UNION ALL
  SELECT 'A coaster' AS expression, 'co' AS source_characters, 'k' as
  target_characters
)
SELECT expression, source_characters, target_characters, TRANSLATE(expression,
source_characters, target_characters) AS translate
FROM example;

+------------------+-------------------+-------------------+------------------+
| expression       | source_characters | target_characters | translate        |
+------------------+-------------------+-------------------+------------------+
| This is a cookie | sco               | zku               | Thiz iz a kuukie |
| A coaster        | co                | k                 | A kaster         |
+------------------+-------------------+-------------------+------------------+

TRIM

TRIM(value_to_trim[, set_of_characters_to_remove])

Description

Takes a STRING or BYTES value to trim.

If the value to trim is a STRING, removes from this value all leading and trailing Unicode code points in set_of_characters_to_remove. The set of code points is optional. If it is not specified, all whitespace characters are removed from the beginning and end of the value to trim.

If the value to trim is BYTES, removes from this value all leading and trailing bytes in set_of_characters_to_remove. The set of bytes is required.

Return type

  • STRING if value_to_trim is a STRING value.
  • BYTES if value_to_trim is a BYTES value.

Examples

In the following example, all leading and trailing whitespace characters are removed from item because set_of_characters_to_remove is not specified.

WITH items AS
  (SELECT '   apple   ' as item
  UNION ALL
  SELECT '   banana   ' as item
  UNION ALL
  SELECT '   orange   ' as item)

SELECT
  CONCAT('#', TRIM(item), '#') as example
FROM items;

+----------+
| example  |
+----------+
| #apple#  |
| #banana# |
| #orange# |
+----------+

In the following example, all leading and trailing * characters are removed from item.

WITH items AS
  (SELECT '***apple***' as item
  UNION ALL
  SELECT '***banana***' as item
  UNION ALL
  SELECT '***orange***' as item)

SELECT
  TRIM(item, '*') as example
FROM items;

+---------+
| example |
+---------+
| apple   |
| banana  |
| orange  |
+---------+

In the following example, all leading and trailing x, y, and z characters are removed from item.

WITH items AS
  (SELECT 'xxxapplexxx' as item
  UNION ALL
  SELECT 'yyybananayyy' as item
  UNION ALL
  SELECT 'zzzorangezzz' as item
  UNION ALL
  SELECT 'xyzpearxyz' as item)

SELECT
  TRIM(item, 'xyz') as example
FROM items;

+---------+
| example |
+---------+
| apple   |
| banana  |
| orange  |
| pear    |
+---------+

In the following example, examine how TRIM interprets characters as Unicode code-points. If your trailing character set contains a combining diacritic mark over a particular letter, TRIM might strip the same diacritic mark from a different letter.

SELECT
  TRIM('abaW̊', 'Y̊') AS a,
  TRIM('W̊aba', 'Y̊') AS b,
  TRIM('abaŪ̊', 'Y̊') AS c,
  TRIM('Ū̊aba', 'Y̊') AS d;

+---------------------------+
| a    | b    | c    | d    |
+---------------------------+
| abaW | W̊aba | abaŪ | Ūaba |
+---------------------------+

In the following example, all leading and trailing b'n', b'a', b'\xab' bytes are removed from item.

WITH items AS
(
  SELECT b'apple' as item UNION ALL
  SELECT b'banana' as item UNION ALL
  SELECT b'\xab\xcd\xef\xaa\xbb' as item
)
SELECT item, TRIM(item, b'na\xab') AS examples
FROM items;

-- Note that the result of TRIM is of type BYTES, displayed as a base64-encoded string.
+----------------------+------------------+
| item                 | example          |
+----------------------+------------------+
| YXBwbGU=             | cHBsZQ==         |
| YmFuYW5h             | Yg==             |
| q83vqrs=             | ze+quw==         |
+----------------------+------------------+

UNICODE

UNICODE(value)

Description

Returns the Unicode code point for the first character in value. Returns 0 if value is empty, or if the resulting Unicode code point is 0.

Return type

INT64

Examples

SELECT UNICODE('âbcd') as A, UNICODE('â') as B, UNICODE('') as C, UNICODE(NULL) as D;

+-------+-------+-------+-------+
| A     | B     | C     | D     |
+-------+-------+-------+-------+
| 226   | 226   | 0     | NULL  |
+-------+-------+-------+-------+

UPPER

UPPER(value)

Description

For STRING arguments, returns the original string with all alphabetic characters in uppercase. Mapping between uppercase and lowercase is done according to the Unicode Character Database without taking into account language-specific mappings.

For BYTES arguments, the argument is treated as ASCII text, with all bytes greater than 127 left intact.

Return type

STRING or BYTES

Examples

WITH items AS
  (SELECT
    'foo' as item
  UNION ALL
  SELECT
    'bar' as item
  UNION ALL
  SELECT
    'baz' as item)

SELECT
  UPPER(item) AS example
FROM items;

+---------+
| example |
+---------+
| FOO     |
| BAR     |
| BAZ     |
+---------+

JSON functions

BigQuery supports the following functions, which can retrieve and transform JSON data.

Function overview

Standard JSON extraction functions (recommended)

The following functions use double quotes to escape invalid JSONPath characters: "a.b".

This behavior is consistent with the ANSI standard.

JSON functionDescriptionReturn type
JSON_QUERY Extracts a JSON value, such as an array or object, or a JSON scalar value, such as a string, number, or boolean. JSON-formatted STRING or JSON
JSON_VALUE Extracts a scalar value. A scalar value can represent a string, number, or boolean. Removes the outermost quotes and unescapes the values. Returns a SQL NULL if a non-scalar value is selected. STRING
JSON_QUERY_ARRAY Extracts an array of JSON values, such as arrays or objects, and JSON scalar values, such as strings, numbers, and booleans. ARRAY<JSON-formatted STRING> or ARRAY<JSON>
JSON_VALUE_ARRAY Extracts an array of scalar values. A scalar value can represent a string, number, or boolean. Removes the outermost quotes and unescapes the values. Returns a SQL NULL if the selected value is not an array or not an array containing only scalar values. ARRAY<STRING>

The following functions use single quotes and brackets to escape invalid JSONPath characters: ['a.b'].

While these functions are supported by BigQuery, we recommend using the functions in the previous table.

JSON functionDescriptionReturn type
JSON_EXTRACT Extracts a JSON value, such as an array or object, or a JSON scalar value, such as a string, number, or boolean. JSON-formatted STRING or JSON
JSON_EXTRACT_SCALAR Extracts a scalar value. A scalar value can represent a string, number, or boolean. Removes the outermost quotes and unescapes the values. Returns a SQL NULL if a non-scalar value is selected. STRING
JSON_EXTRACT_ARRAY Extracts an array of JSON values, such as arrays or objects, and JSON scalar values, such as strings, numbers, and booleans. ARRAY<JSON-formatted STRING> or ARRAY<JSON>
JSON_EXTRACT_STRING_ARRAY Extracts an array of scalar values. A scalar value can represent a string, number, or boolean. Removes the outermost quotes and unescapes the values. Returns a SQL NULL if the selected value is not an array or not an array containing only scalar values. ARRAY<STRING>

Other JSON functions

JSON functionDescriptionReturn type
PARSE_JSON Takes a JSON-formatted string and returns a JSON value. JSON
TO_JSON Takes a SQL value and returns a JSON value. JSON
TO_JSON_STRING Takes a SQL value and returns a JSON-formatted string representation of the value. JSON-formatted STRING
STRING Extracts a string from JSON. STRING
BOOL Extracts a boolean from JSON. BOOL
INT64 Extracts a 64-bit integer from JSON. INT64
FLOAT64 Extracts a 64-bit floating-point number from JSON. FLOAT64
JSON_TYPE Returns the type of the outermost JSON value as a string. STRING
JSON_EXTRACT(json_string_expr, json_path)
JSON_EXTRACT(json_expr, json_path)

Description

Extracts a JSON value, such as an array or object, or a JSON scalar value, such as a string, number, or boolean. If a JSON key uses invalid JSONPath characters, then you can escape those characters using single quotes and brackets.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    

    Extracts a SQL NULL when a JSON-formatted string null is encountered. For example:

    SELECT JSON_EXTRACT("null", "$") -- Returns a SQL NULL
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    

    Extracts a JSON null when a JSON null is encountered.

    SELECT JSON_EXTRACT(JSON 'null', "$") -- Returns a JSON 'null'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input.

Return type

  • json_string_expr: A JSON-formatted STRING
  • json_expr: JSON

Examples

In the following example, JSON data is extracted and returned as JSON.

SELECT
  JSON_EXTRACT(JSON '{"class":{"students":[{"id":5},{"id":12}]}}', '$.class')
  AS json_data;

+-----------------------------------+
| json_data                         |
+-----------------------------------+
| {"students":[{"id":5},{"id":12}]} |
+-----------------------------------+

In the following examples, JSON data is extracted and returned as JSON-formatted strings.

SELECT JSON_EXTRACT(json_text, '$') AS json_text_string
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+-----------------------------------------------------------+
| json_text_string                                          |
+-----------------------------------------------------------+
| {"class":{"students":[{"name":"Jane"}]}}                  |
| {"class":{"students":[]}}                                 |
| {"class":{"students":[{"name":"John"},{"name":"Jamie"}]}} |
+-----------------------------------------------------------+
SELECT JSON_EXTRACT(json_text, '$.class.students[0]') AS first_student
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+-----------------+
| first_student   |
+-----------------+
| {"name":"Jane"} |
| NULL            |
| {"name":"John"} |
+-----------------+
SELECT JSON_EXTRACT(json_text, '$.class.students[1].name') AS second_student_name
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name" : null}]}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+-------------------+
| second_student    |
+-------------------+
| NULL              |
| NULL              |
| NULL              |
| "Jamie"           |
+-------------------+
SELECT JSON_EXTRACT(json_text, "$.class['students']") AS student_names
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+------------------------------------+
| student_names                      |
+------------------------------------+
| [{"name":"Jane"}]                  |
| []                                 |
| [{"name":"John"},{"name":"Jamie"}] |
+------------------------------------+
SELECT JSON_EXTRACT('{"a":null}', "$.a"); -- Returns a SQL NULL
SELECT JSON_EXTRACT('{"a":null}', "$.b"); -- Returns a SQL NULL
SELECT JSON_EXTRACT(JSON '{"a":null}', "$.a"); -- Returns a JSON 'null'
SELECT JSON_EXTRACT(JSON '{"a":null}', "$.b"); -- Returns a SQL NULL

JSON_QUERY

JSON_QUERY(json_string_expr, json_path)
JSON_QUERY(json_expr, json_path)

Description

Extracts a JSON value, such as an array or object, or a JSON scalar value, such as a string, number, or boolean. If a JSON key uses invalid JSONPath characters, then you can escape those characters using double quotes.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    

    Extracts a SQL NULL when a JSON-formatted string null is encountered. For example:

    SELECT JSON_QUERY("null", "$") -- Returns a SQL NULL
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    

    Extracts a JSON null when a JSON null is encountered.

    SELECT JSON_QUERY(JSON 'null', "$") -- Returns a JSON 'null'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input.

Return type

  • json_string_expr: A JSON-formatted STRING
  • json_expr: JSON

Examples

In the following example, JSON data is extracted and returned as JSON.

SELECT
  JSON_QUERY(JSON '{"class":{"students":[{"id":5},{"id":12}]}}', '$.class')
  AS json_data;

+-----------------------------------+
| json_data                         |
+-----------------------------------+
| {"students":[{"id":5},{"id":12}]} |
+-----------------------------------+

In the following examples, JSON data is extracted and returned as JSON-formatted strings.

SELECT JSON_QUERY(json_text, '$') AS json_text_string
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+-----------------------------------------------------------+
| json_text_string                                          |
+-----------------------------------------------------------+
| {"class":{"students":[{"name":"Jane"}]}}                  |
| {"class":{"students":[]}}                                 |
| {"class":{"students":[{"name":"John"},{"name":"Jamie"}]}} |
+-----------------------------------------------------------+
SELECT JSON_QUERY(json_text, '$.class.students[0]') AS first_student
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+-----------------+
| first_student   |
+-----------------+
| {"name":"Jane"} |
| NULL            |
| {"name":"John"} |
+-----------------+
SELECT JSON_QUERY(json_text, '$.class.students[1].name') AS second_student_name
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name" : null}]}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+-------------------+
| second_student    |
+-------------------+
| NULL              |
| NULL              |
| NULL              |
| "Jamie"           |
+-------------------+
SELECT JSON_QUERY(json_text, '$.class."students"') AS student_names
FROM UNNEST([
  '{"class" : {"students" : [{"name" : "Jane"}]}}',
  '{"class" : {"students" : []}}',
  '{"class" : {"students" : [{"name" : "John"}, {"name": "Jamie"}]}}'
  ]) AS json_text;

+------------------------------------+
| student_names                      |
+------------------------------------+
| [{"name":"Jane"}]                  |
| []                                 |
| [{"name":"John"},{"name":"Jamie"}] |
+------------------------------------+
SELECT JSON_QUERY('{"a":null}', "$.a"); -- Returns a SQL NULL
SELECT JSON_QUERY('{"a":null}', "$.b"); -- Returns a SQL NULL
SELECT JSON_QUERY(JSON '{"a":null}', "$.a"); -- Returns a JSON 'null'
SELECT JSON_QUERY(JSON '{"a":null}', "$.b"); -- Returns a SQL NULL
JSON_EXTRACT_SCALAR(json_string_expr[, json_path])
JSON_EXTRACT_SCALAR(json_expr[, json_path])

Description

Extracts a scalar value and then returns it as a string. A scalar value can represent a string, number, or boolean. Removes the outermost quotes and unescapes the return values. If a JSON key uses invalid JSONPath characters, then you can escape those characters using single quotes and brackets.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter is not provided, then the JSONPath $ symbol is applied, which means that all of the data is analyzed.

    If json_path returns a JSON null or a non-scalar value (in other words, if json_path refers to an object or an array), then a SQL NULL is returned.

Return type

STRING

Examples

In the following example, age is extracted.

SELECT JSON_EXTRACT_SCALAR(JSON '{ "name" : "Jakob", "age" : "6" }', '$.age') AS scalar_age;

+------------+
| scalar_age |
+------------+
| 6          |
+------------+

The following example compares how results are returned for the JSON_EXTRACT and JSON_EXTRACT_SCALAR functions.

SELECT JSON_EXTRACT('{ "name" : "Jakob", "age" : "6" }', '$.name') AS json_name,
  JSON_EXTRACT_SCALAR('{ "name" : "Jakob", "age" : "6" }', '$.name') AS scalar_name,
  JSON_EXTRACT('{ "name" : "Jakob", "age" : "6" }', '$.age') AS json_age,
  JSON_EXTRACT_SCALAR('{ "name" : "Jakob", "age" : "6" }', '$.age') AS scalar_age;

+-----------+-------------+----------+------------+
| json_name | scalar_name | json_age | scalar_age |
+-----------+-------------+----------+------------+
| "Jakob"   | Jakob       | "6"      | 6          |
+-----------+-------------+----------+------------+
SELECT JSON_EXTRACT('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_extract,
  JSON_EXTRACT_SCALAR('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_extract_scalar;

+--------------------+---------------------+
| json_extract       | json_extract_scalar |
+--------------------+---------------------+
| ["apple","banana"] | NULL                |
+--------------------+---------------------+

In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets, [' ']. For example:

SELECT JSON_EXTRACT_SCALAR('{"a.b": {"c": "world"}}', "$['a.b'].c") AS hello;

+-------+
| hello |
+-------+
| world |
+-------+

JSON_VALUE

JSON_VALUE(json_string_expr[, json_path])
JSON_VALUE(json_expr[, json_path])

Description

Extracts a scalar value and then returns it as a string. A scalar value can represent a string, number, or boolean. Removes the outermost quotes and unescapes the return values. If a JSON key uses invalid JSONPath characters, then you can escape those characters using double quotes.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter is not provided, then the JSONPath $ symbol is applied, which means that all of the data is analyzed.

    If json_path returns a JSON null or a non-scalar value (in other words, if json_path refers to an object or an array), then a SQL NULL is returned.

Return type

STRING

Examples

In the following example, JSON data is extracted and returned as a scalar value.

SELECT JSON_VALUE(JSON '{ "name" : "Jakob", "age" : "6" }', '$.age') AS scalar_age;

+------------+
| scalar_age |
+------------+
| 6          |
+------------+

The following example compares how results are returned for the JSON_QUERY and JSON_VALUE functions.

SELECT JSON_QUERY('{ "name" : "Jakob", "age" : "6" }', '$.name') AS json_name,
  JSON_VALUE('{ "name" : "Jakob", "age" : "6" }', '$.name') AS scalar_name,
  JSON_QUERY('{ "name" : "Jakob", "age" : "6" }', '$.age') AS json_age,
  JSON_VALUE('{ "name" : "Jakob", "age" : "6" }', '$.age') AS scalar_age;

+-----------+-------------+----------+------------+
| json_name | scalar_name | json_age | scalar_age |
+-----------+-------------+----------+------------+
| "Jakob"   | Jakob       | "6"      | 6          |
+-----------+-------------+----------+------------+
SELECT JSON_QUERY('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_query,
  JSON_VALUE('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_value;

+--------------------+------------+
| json_query         | json_value |
+--------------------+------------+
| ["apple","banana"] | NULL       |
+--------------------+------------+

In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes. For example:

SELECT JSON_VALUE('{"a.b": {"c": "world"}}', '$."a.b".c') AS hello;

+-------+
| hello |
+-------+
| world |
+-------+
JSON_EXTRACT_ARRAY(json_string_expr[, json_path])
JSON_EXTRACT_ARRAY(json_expr[, json_path])

Description

Extracts an array of JSON values, such as arrays or objects, and JSON scalar values, such as strings, numbers, and booleans. If a JSON key uses invalid JSONPath characters, then you can escape those characters using single quotes and brackets.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter is not provided, then the JSONPath $ symbol is applied, which means that all of the data is analyzed.

Return type

  • json_string_expr: ARRAY<JSON-formatted STRING>
  • json_expr: ARRAY<JSON>

Examples

This extracts items in JSON to an array of JSON values:

SELECT JSON_EXTRACT_ARRAY(
  JSON '{"fruits":["apples","oranges","grapes"]}','$.fruits'
  ) AS json_array;

+---------------------------------+
| json_array                      |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
+---------------------------------+

This extracts the items in a JSON-formatted string to a string array:

SELECT JSON_EXTRACT_ARRAY('[1,2,3]') AS string_array;

+--------------+
| string_array |
+--------------+
| [1, 2, 3]    |
+--------------+

This extracts a string array and converts it to an integer array:

SELECT ARRAY(
  SELECT CAST(integer_element AS INT64)
  FROM UNNEST(
    JSON_EXTRACT_ARRAY('[1,2,3]','$')
  ) AS integer_element
) AS integer_array;

+---------------+
| integer_array |
+---------------+
| [1, 2, 3]     |
+---------------+

This extracts string values in a JSON-formatted string to an array:

-- Doesn't strip the double quotes
SELECT JSON_EXTRACT_ARRAY('["apples","oranges","grapes"]', '$') AS string_array;

+---------------------------------+
| string_array                    |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
+---------------------------------+

-- Strips the double quotes
SELECT ARRAY(
  SELECT JSON_EXTRACT_SCALAR(string_element, '$')
  FROM UNNEST(JSON_EXTRACT_ARRAY('["apples","oranges","grapes"]','$')) AS string_element
) AS string_array;

+---------------------------+
| string_array              |
+---------------------------+
| [apples, oranges, grapes] |
+---------------------------+

This extracts only the items in the fruit property to an array:

SELECT JSON_EXTRACT_ARRAY(
  '{"fruit":[{"apples":5,"oranges":10},{"apples":2,"oranges":4}],"vegetables":[{"lettuce":7,"kale": 8}]}',
  '$.fruit'
) AS string_array;

+-------------------------------------------------------+
| string_array                                          |
+-------------------------------------------------------+
| [{"apples":5,"oranges":10}, {"apples":2,"oranges":4}] |
+-------------------------------------------------------+

These are equivalent:

SELECT JSON_EXTRACT_ARRAY('{"fruits":["apples","oranges","grapes"]}','$[fruits]') AS string_array;

SELECT JSON_EXTRACT_ARRAY('{"fruits":["apples","oranges","grapes"]}','$.fruits') AS string_array;

-- The queries above produce the following result:
+---------------------------------+
| string_array                    |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
+---------------------------------+

In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets, [' ']. For example:

SELECT JSON_EXTRACT_ARRAY('{"a.b": {"c": ["world"]}}', "$['a.b'].c") AS hello;

+-----------+
| hello     |
+-----------+
| ["world"] |
+-----------+

The following examples explore how invalid requests and empty arrays are handled:

  • If a JSONPath is invalid, an error is thrown.
  • If a JSON-formatted string is invalid, the output is NULL.
  • It is okay to have empty arrays in the JSON-formatted string.
-- An error is thrown if you provide an invalid JSONPath.
SELECT JSON_EXTRACT_ARRAY('["foo","bar","baz"]','INVALID_JSONPath') AS result;

-- If the JSONPath does not refer to an array, then NULL is returned.
SELECT JSON_EXTRACT_ARRAY('{"a":"foo"}','$.a') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a key that does not exist is specified, then the result is NULL.
SELECT JSON_EXTRACT_ARRAY('{"a":"foo"}','$.b') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- Empty arrays in JSON-formatted strings are supported.
SELECT JSON_EXTRACT_ARRAY('{"a":"foo","b":[]}','$.b') AS result;

+--------+
| result |
+--------+
| []     |
+--------+

JSON_QUERY_ARRAY

JSON_QUERY_ARRAY(json_string_expr[, json_path])
JSON_QUERY_ARRAY(json_expr[, json_path])

Description

Extracts an array of JSON values, such as arrays or objects, and JSON scalar values, such as strings, numbers, and booleans. If a JSON key uses invalid JSONPath characters, then you can escape those characters using double quotes.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter is not provided, then the JSONPath $ symbol is applied, which means that all of the data is analyzed.

Return type

  • json_string_expr: ARRAY<JSON-formatted STRING>
  • json_expr: ARRAY<JSON>

Examples

This extracts items in JSON to an array of JSON values:

SELECT JSON_QUERY_ARRAY(
  JSON '{"fruits":["apples","oranges","grapes"]}','$.fruits'
  ) AS json_array;

+---------------------------------+
| json_array                      |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
+---------------------------------+

This extracts the items in a JSON-formatted string to a string array:

SELECT JSON_QUERY_ARRAY('[1,2,3]') AS string_array;

+--------------+
| string_array |
+--------------+
| [1, 2, 3]    |
+--------------+

This extracts a string array and converts it to an integer array:

SELECT ARRAY(
  SELECT CAST(integer_element AS INT64)
  FROM UNNEST(
    JSON_QUERY_ARRAY('[1,2,3]','$')
  ) AS integer_element
) AS integer_array;

+---------------+
| integer_array |
+---------------+
| [1, 2, 3]     |
+---------------+

This extracts string values in a JSON-formatted string to an array:

-- Doesn't strip the double quotes
SELECT JSON_QUERY_ARRAY('["apples","oranges","grapes"]', '$') AS string_array;

+---------------------------------+
| string_array                    |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
+---------------------------------+

-- Strips the double quotes
SELECT ARRAY(
  SELECT JSON_VALUE(string_element, '$')
  FROM UNNEST(JSON_QUERY_ARRAY('["apples","oranges","grapes"]','$')) AS string_element
) AS string_array;

+---------------------------+
| string_array              |
+---------------------------+
| [apples, oranges, grapes] |
+---------------------------+

This extracts only the items in the fruit property to an array:

SELECT JSON_QUERY_ARRAY(
  '{"fruit":[{"apples":5,"oranges":10},{"apples":2,"oranges":4}],"vegetables":[{"lettuce":7,"kale": 8}]}',
  '$.fruit'
) AS string_array;

+-------------------------------------------------------+
| string_array                                          |
+-------------------------------------------------------+
| [{"apples":5,"oranges":10}, {"apples":2,"oranges":4}] |
+-------------------------------------------------------+

These are equivalent:

SELECT JSON_QUERY_ARRAY('{"fruits":["apples","oranges","grapes"]}','$.fruits') AS string_array;

SELECT JSON_QUERY_ARRAY('{"fruits":["apples","oranges","grapes"]}','$."fruits"') AS string_array;

-- The queries above produce the following result:
+---------------------------------+
| string_array                    |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
+---------------------------------+

In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes: " ". For example:

SELECT JSON_QUERY_ARRAY('{"a.b": {"c": ["world"]}}', '$."a.b".c') AS hello;

+-----------+
| hello     |
+-----------+
| ["world"] |
+-----------+

The following examples show how invalid requests and empty arrays are handled:

-- An error is returned if you provide an invalid JSONPath.
SELECT JSON_QUERY_ARRAY('["foo","bar","baz"]','INVALID_JSONPath') AS result;

-- If the JSONPath does not refer to an array, then NULL is returned.
SELECT JSON_QUERY_ARRAY('{"a":"foo"}','$.a') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a key that does not exist is specified, then the result is NULL.
SELECT JSON_QUERY_ARRAY('{"a":"foo"}','$.b') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- Empty arrays in JSON-formatted strings are supported.
SELECT JSON_QUERY_ARRAY('{"a":"foo","b":[]}','$.b') AS result;

+--------+
| result |
+--------+
| []     |
+--------+
JSON_EXTRACT_STRING_ARRAY(json_string_expr[, json_path])
JSON_EXTRACT_STRING_ARRAY(json_expr[, json_path])

Description

Extracts an array of scalar values and returns an array of string-formatted scalar values. A scalar value can represent a string, number, or boolean. If a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter is not provided, then the JSONPath $ symbol is applied, which means that all of the data is analyzed.

Caveats:

  • A JSON null in the input array produces a SQL NULL as the output for that JSON null. If the output contains a NULL array element, an error is produced because the final output cannot be an array with NULL values.
  • If a JSONPath matches an array that contains scalar objects and a JSON null, then the output of the function must be transformed because the final output cannot be an array with NULL values.

Return type

ARRAY<STRING>

Examples

This extracts items in JSON to a string array:

SELECT JSON_EXTRACT_STRING_ARRAY(
  JSON '{"fruits":["apples","oranges","grapes"]}','$.fruits'
  ) AS string_array;

+---------------------------+
| string_array              |
+---------------------------+
| [apples, oranges, grapes] |
+---------------------------+

The following example compares how results are returned for the JSON_EXTRACT_ARRAY and JSON_EXTRACT_STRING_ARRAY functions.

SELECT JSON_EXTRACT_ARRAY('["apples","oranges"]') AS json_array,
JSON_EXTRACT_STRING_ARRAY('["apples","oranges"]') AS string_array;

+-----------------------+-------------------+
| json_array            | string_array      |
+-----------------------+-------------------+
| ["apples", "oranges"] | [apples, oranges] |
+-----------------------+-------------------+

This extracts the items in a JSON-formatted string to a string array:

-- Strips the double quotes
SELECT JSON_EXTRACT_STRING_ARRAY('["foo","bar","baz"]','$') AS string_array;

+-----------------+
| string_array    |
+-----------------+
| [foo, bar, baz] |
+-----------------+

This extracts a string array and converts it to an integer array:

SELECT ARRAY(
  SELECT CAST(integer_element AS INT64)
  FROM UNNEST(
    JSON_EXTRACT_STRING_ARRAY('[1,2,3]','$')
  ) AS integer_element
) AS integer_array;

+---------------+
| integer_array |
+---------------+
| [1, 2, 3]     |
+---------------+

These are equivalent:

SELECT JSON_EXTRACT_STRING_ARRAY('{"fruits":["apples","oranges","grapes"]}','$[fruits]') AS string_array;

SELECT JSON_EXTRACT_STRING_ARRAY('{"fruits":["apples","oranges","grapes"]}','$.fruits') AS string_array;

-- The queries above produce the following result:
+---------------------------+
| string_array              |
+---------------------------+
| [apples, oranges, grapes] |
+---------------------------+

In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets: [' ']. For example:

SELECT JSON_EXTRACT_STRING_ARRAY('{"a.b": {"c": ["world"]}}', "$['a.b'].c") AS hello;

+---------+
| hello   |
+---------+
| [world] |
+---------+

The following examples explore how invalid requests and empty arrays are handled:

-- An error is thrown if you provide an invalid JSONPath.
SELECT JSON_EXTRACT_STRING_ARRAY('["foo","bar","baz"]','INVALID_JSONPath') AS result;

-- If the JSON formatted string is invalid, then NULL is returned.
SELECT JSON_EXTRACT_STRING_ARRAY('}}','$') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If the JSON document is NULL, then NULL is returned.
SELECT JSON_EXTRACT_STRING_ARRAY(NULL,'$') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath does not match anything, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a":["foo","bar","baz"]}','$.b') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an object that is not an array, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a":"foo"}','$') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an array of non-scalar objects, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a":[{"b":"foo","c":1},{"b":"bar","c":2}],"d":"baz"}','$.a') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an array of mixed scalar and non-scalar objects, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a":[10, {"b": 20}]','$.a') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an empty JSON array, then the output is an empty array instead of NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a":"foo","b":[]}','$.b') AS result;

+--------+
| result |
+--------+
| []     |
+--------+

-- The following query produces and error because the final output cannot be an
-- array with NULLs.
SELECT JSON_EXTRACT_STRING_ARRAY('["world", 1, null]') AS result;

JSON_VALUE_ARRAY

JSON_VALUE_ARRAY(json_string_expr[, json_path])
JSON_VALUE_ARRAY(json_expr[, json_path])

Description

Extracts an array of scalar values and returns an array of string-formatted scalar values. A scalar value can represent a string, number, or boolean. If a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes.

  • json_string_expr: A JSON-formatted string. For example:

    '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_expr: JSON. For example:

    JSON '{"class" : {"students" : [{"name" : "Jane"}]}}'
    
  • json_path: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter is not provided, then the JSONPath $ symbol is applied, which means that all of the data is analyzed.

Caveats:

  • A JSON null in the input array produces a SQL NULL as the output for JSON null. If the output contains a NULL array element, an error is produced because the final output cannot be an array with NULL values.
  • If a JSONPath matches an array that contains scalar objects and a JSON null, then the output of the function must be transformed because the final output cannot be an array with NULL values.

Return type

ARRAY<STRING>

Examples

This extracts items in JSON to a string array:

SELECT JSON_VALUE_ARRAY(
  JSON '{"fruits":["apples","oranges","grapes"]}','$.fruits'
  ) AS string_array;

+---------------------------+
| string_array              |
+---------------------------+
| [apples, oranges, grapes] |
+---------------------------+

The following example compares how results are returned for the JSON_QUERY_ARRAY and JSON_VALUE_ARRAY functions.

SELECT JSON_QUERY_ARRAY('["apples","oranges"]') AS json_array,
       JSON_VALUE_ARRAY('["apples","oranges"]') AS string_array;

+-----------------------+-------------------+
| json_array            | string_array      |
+-----------------------+-------------------+
| ["apples", "oranges"] | [apples, oranges] |
+-----------------------+-------------------+

This extracts the items in a JSON-formatted string to a string array:

-- Strips the double quotes
SELECT JSON_VALUE_ARRAY('["foo","bar","baz"]','$') AS string_array;

+-----------------+
| string_array    |
+-----------------+
| [foo, bar, baz] |
+-----------------+

This extracts a string array and converts it to an integer array:

SELECT ARRAY(
  SELECT CAST(integer_element AS INT64)
  FROM UNNEST(
    JSON_VALUE_ARRAY('[1,2,3]','$')
  ) AS integer_element
) AS integer_array;

+---------------+
| integer_array |
+---------------+
| [1, 2, 3]     |
+---------------+

These are equivalent:

SELECT JSON_VALUE_ARRAY('{"fruits":["apples","oranges","grapes"]}','$.fruits') AS string_array;
SELECT JSON_VALUE_ARRAY('{"fruits":["apples","oranges","grapes"]}','$."fruits"') AS string_array;

-- The queries above produce the following result:
+---------------------------+
| string_array              |
+---------------------------+
| [apples, oranges, grapes] |
+---------------------------+

In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes: " ". For example:

SELECT JSON_VALUE_ARRAY('{"a.b": {"c": ["world"]}}', '$."a.b".c') AS hello;

+---------+
| hello   |
+---------+
| [world] |
+---------+

The following examples explore how invalid requests and empty arrays are handled:

-- An error is thrown if you provide an invalid JSONPath.
SELECT JSON_VALUE_ARRAY('["foo","bar","baz"]','INVALID_JSONPath') AS result;

-- If the JSON-formatted string is invalid, then NULL is returned.
SELECT JSON_VALUE_ARRAY('}}','$') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If the JSON document is NULL, then NULL is returned.
SELECT JSON_VALUE_ARRAY(NULL,'$') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath does not match anything, then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a":["foo","bar","baz"]}','$.b') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an object that is not an array, then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a":"foo"}','$') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an array of non-scalar objects, then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a":[{"b":"foo","c":1},{"b":"bar","c":2}],"d":"baz"}','$.a') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an array of mixed scalar and non-scalar objects,
-- then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a":[10, {"b": 20}]','$.a') AS result;

+--------+
| result |
+--------+
| NULL   |
+--------+

-- If a JSONPath matches an empty JSON array, then the output is an empty array instead of NULL.
SELECT JSON_VALUE_ARRAY('{"a":"foo","b":[]}','$.b') AS result;

+--------+
| result |
+--------+
| []     |
+--------+

-- The following query produces and error because the final output cannot be an
-- array with NULLs.
SELECT JSON_VALUE_ARRAY('["world", 1, null]') AS result;

PARSE_JSON

PARSE_JSON(json_string_expr[, wide_number_mode=>{ 'exact' | 'round' }])

Description

Takes a SQL STRING value and returns a SQL JSON value. The STRING value represents a string-formatted JSON value.

This function supports an optional mandatory-named argument called wide_number_mode that determines how to handle numbers that cannot be stored in a JSON value without the loss of precision. If used, wide_number_mode must include one of these values:

  • exact: Only accept numbers that can be stored without loss of precision. If a number that cannot be stored without loss of precision is encountered, the function throws an error.
  • round: If a number that cannot be stored without loss of precision is encountered, attempt to round it to a number that can be stored without loss of precision. If the number cannot be rounded, the function throws an error.

If wide_number_mode is not used, the function implicitly includes wide_number_mode=>'exact'. If a number appears in a JSON object or array, the wide_number_mode argument is applied to the number in the object or array.

Numbers from the following domains can be stored in JSON without loss of precision:

  • 64-bit signed/unsigned integers, such as INT64
  • FLOAT64

Return type

JSON

Examples

In the following example, a JSON-formatted string is converted to JSON.

SELECT PARSE_JSON('{"coordinates":[10,20],"id":1}') AS json_data;

+--------------------------------+
| json_data                      |
+--------------------------------+
| {"coordinates":[10,20],"id":1} |
+--------------------------------+

The following queries fail because:

  • The number that was passed in cannot be stored without loss of precision.
  • wide_number_mode=>'exact' is used implicitly in the first query and explicitly in the second query.
SELECT PARSE_JSON('{"id":922337203685477580701}') AS json_data; -- fails
SELECT PARSE_JSON('{"id":922337203685477580701}', wide_number_mode=>'exact') AS json_data; -- fails

The following query rounds the number to a number that can be stored in JSON.

SELECT PARSE_JSON('{"id":922337203685477580701}', wide_number_mode=>'round') AS json_data;

+--------------------------------+
| json_data                      |
+--------------------------------+
| {"id":9.223372036854776e+20}   |
+--------------------------------+

TO_JSON

TO_JSON(sql_value[, stringify_wide_numbers=>{ TRUE | FALSE }])

Description

Takes a SQL value and returns a JSON value. The value must be a supported BigQuery data type. You can review the BigQuery data types that this function supports and their JSON encodings here.

This function supports an optional mandatory-named argument called stringify_wide_numbers.

  • If this argument is TRUE, numeric values outside of the FLOAT64 type domain are encoded as strings.
  • If this argument is not used or is FALSE, numeric values outside of the FLOAT64 type domain are not encoded as strings, but are stored as JSON numbers. If a numerical value cannot be stored in JSON without loss of precision, an error is thrown.

The following numerical data types are affected by the stringify_wide_numbers argument:

  • INT64
  • NUMERIC
  • BIGNUMERIC

If one of these numerical data types appears in a container data type such as an ARRAY or STRUCT, the stringify_wide_numbers argument is applied to the numerical data types in the container data type.

Return type

A JSON value

Examples

In the following example, the query converts rows in a table to JSON values.

With CoordinatesTable AS (
    (SELECT 1 AS id, [10,20] AS coordinates) UNION ALL
    (SELECT 2 AS id, [30,40] AS coordinates) UNION ALL
    (SELECT 3 AS id, [50,60] AS coordinates))
SELECT TO_JSON(t) AS json_objects
FROM CoordinatesTable AS t;

+--------------------------------+
| json_objects                   |
+--------------------------------+
| {"coordinates":[10,20],"id":1} |
| {"coordinates":[30,40],"id":2} |
| {"coordinates":[50,60],"id":3} |
+--------------------------------+

In the following example, the query returns a large numerical value as a JSON string.

SELECT TO_JSON(9007199254740993, stringify_wide_numbers=>TRUE) as stringify_on

+--------------------+
| stringify_on       |
+--------------------+
| "9007199254740993" |
+--------------------+

In the following example, both queries return a large numerical value as a JSON number.

SELECT TO_JSON(9007199254740993, stringify_wide_numbers=>FALSE) as stringify_off
SELECT TO_JSON(9007199254740993) as stringify_off

+------------------+
| stringify_off    |
+------------------+
| 9007199254740993 |
+------------------+

In the following example, only large numeric values are converted to JSON strings.

With T1 AS (
  (SELECT 9007199254740993 AS id) UNION ALL
  (SELECT 2 AS id))
SELECT TO_JSON(t, stringify_wide_numbers=>TRUE) AS json_objects
FROM T1 AS t;

+---------------------------+
| json_objects              |
+---------------------------+
| {"id":"9007199254740993"} |
| {"id":2}                  |
+---------------------------+

In this example, the values 9007199254740993 (INT64) and 2.1 (FLOAT64) are converted to the common supertype FLOAT64, which is not affected by the stringify_wide_numbers argument.

With T1 AS (
  (SELECT 9007199254740993 AS id) UNION ALL
  (SELECT 2.1 AS id))
SELECT TO_JSON(t, stringify_wide_numbers=>TRUE) AS json_objects
FROM T1 AS t;

+------------------------------+
| json_objects                 |
+------------------------------+
| {"id":9.007199254740992e+15} |
| {"id":2.1}                   |
+------------------------------+

TO_JSON_STRING

TO_JSON_STRING(value[, pretty_print])

Description

Takes a SQL value and returns a JSON-formatted string representation of the value. The value must be a supported BigQuery data type. You can review the BigQuery data types that this function supports and their JSON encodings here.

This function supports an optional boolean parameter called pretty_print. If pretty_print is true, the returned value is formatted for easy readability.

Return type

A JSON-formatted STRING

Examples

Convert rows in a table to JSON-formatted strings.

With CoordinatesTable AS (
    (SELECT 1 AS id, [10,20] AS coordinates) UNION ALL
    (SELECT 2 AS id, [30,40] AS coordinates) UNION ALL
    (SELECT 3 AS id, [50,60] AS coordinates))
SELECT id, coordinates, TO_JSON_STRING(t) AS json_data
FROM CoordinatesTable AS t;

+----+-------------+--------------------------------+
| id | coordinates | json_data                      |
+----+-------------+--------------------------------+
| 1  | [10, 20]    | {"id":1,"coordinates":[10,20]} |
| 2  | [30, 40]    | {"id":2,"coordinates":[30,40]} |
| 3  | [50, 60]    | {"id":3,"coordinates":[50,60]} |
+----+-------------+--------------------------------+

Convert rows in a table to JSON-formatted strings that are easy to read.

With CoordinatesTable AS (
    (SELECT 1 AS id, [10,20] AS coordinates) UNION ALL
    (SELECT 2 AS id, [30,40] AS coordinates))
SELECT id, coordinates, TO_JSON_STRING(t, true) AS json_data
FROM CoordinatesTable AS t;

+----+-------------+--------------------+
| id | coordinates | json_data          |
+----+-------------+--------------------+
| 1  | [10, 20]    | {                  |
|    |             |   "id": 1,         |
|    |             |   "coordinates": [ |
|    |             |     10,            |
|    |             |     20             |
|    |             |   ]                |
|    |             | }                  |
+----+-------------+--------------------+
| 2  | [30, 40]    | {                  |
|    |             |   "id": 2,         |
|    |             |   "coordinates": [ |
|    |             |     30,            |
|    |             |     40             |
|    |             |   ]                |
|    |             | }                  |
+----+-------------+--------------------+

STRING

STRING(json_expr)

Description

Takes a JSON expression, extracts a JSON string, and returns that value as a SQL STRING. If the expression is SQL NULL, the function returns SQL NULL. If the extracted JSON value is not a string, an error is produced.

  • json_expr: JSON. For example:

    JSON '{"name": "sky", "color" : "blue"}'
    

Return type

STRING

Examples

SELECT STRING(JSON '"purple"') AS color;

+--------+
| color  |
+--------+
| purple |
+--------+
SELECT STRING(JSON_QUERY(JSON '{"name": "sky", "color": "blue"}', "$.color")) AS color;

+-------+
| color |
+-------+
| blue  |
+-------+

The following examples show how invalid requests are handled:

-- An error is thrown if the JSON is not of type string.
SELECT STRING(JSON '123') AS result; -- Throws an error
SELECT STRING(JSON 'null') AS result; -- Throws an error
SELECT SAFE.STRING(JSON '123') AS result; -- Returns a SQL NULL

BOOL

BOOL(json_expr)

Description

Takes a JSON expression, extracts a JSON boolean, and returns that value as a SQL BOOL. If the expression is SQL NULL, the function returns SQL NULL. If the extracted JSON value is not a boolean, an error is produced.

  • json_expr: JSON. For example:

    JSON '{"name": "sky", "color" : "blue"}'
    

Return type

BOOL

Examples

SELECT BOOL(JSON 'true') AS vacancy;

+---------+
| vacancy |
+---------+
| true    |
+---------+
SELECT BOOL(JSON_QUERY(JSON '{"hotel class": "5-star", "vacancy": true}', "$.vacancy")) AS vacancy;

+---------+
| vacancy |
+---------+
| true    |
+---------+

The following examples show how invalid requests are handled:

-- An error is thrown if JSON is not of type bool.
SELECT BOOL(JSON '123') AS result; -- Throws an error
SELECT BOOL(JSON 'null') AS result; -- Throw an error
SELECT SAFE.BOOL(JSON '123') AS result; -- Returns a SQL NULL

INT64

INT64(json_expr)

Description

Takes a JSON expression, extracts a JSON number and returns that value as a SQL INT64. If the expression is SQL NULL, the function returns SQL NULL. If the extracted JSON number has a fractional part or is outside of the INT64 domain, an error is produced.

  • json_expr: JSON. For example:

    JSON '{"name": "sky", "color" : "blue"}'
    

Return type

INT64

Examples

SELECT INT64(JSON '2005') AS flight_number;

+---------------+
| flight_number |
+---------------+
| 2005          |
+---------------+
SELECT INT64(JSON_QUERY(JSON '{"gate": "A4", "flight_number": 2005}', "$.flight_number")) AS flight_number;

+---------------+
| flight_number |
+---------------+
| 2005          |
+---------------+
SELECT INT64(JSON '10.0') AS score;

+-------+
| score |
+-------+
| 10    |
+-------+

The following examples show how invalid requests are handled:

-- An error is thrown if JSON is not a number or cannot be converted to a 64-bit integer.
SELECT INT64(JSON '10.1') AS result;  -- Throws an error
SELECT INT64(JSON '"strawberry"') AS result; -- Throws an error
SELECT INT64(JSON 'null') AS result; -- Throws an error
SELECT SAFE.INT64(JSON '"strawberry"') AS result;  -- Returns a SQL NULL

FLOAT64

FLOAT64(json_expr[, wide_number_mode=>{ 'exact' | 'round' }])

Description

Takes a JSON expression, extracts a JSON number and returns that value as a SQL FLOAT64. If the expression is SQL NULL, the function returns SQL NULL. If the extracted JSON value is not a number, an error is produced.

  • json_expr: JSON. For example:

    JSON '{"name": "sky", "color" : "blue"}'
    

This function supports an optional mandatory-named argument called wide_number_mode which defines what happens with a number that cannot be represented as a FLOAT64 without loss of precision.

This argument accepts one of the two case-sensitive values:

  • ‘exact’: The function fails if the result cannot be represented as a FLOAT64 without loss of precision.
  • ‘round’: The numeric value stored in JSON will be rounded to FLOAT64. If such rounding is not possible, the function fails. This is the default value if the argument is not specified.

Return type

FLOAT64

Examples

SELECT FLOAT64(JSON '9.8') AS velocity;

+----------+
| velocity |
+----------+
| 9.8      |
+----------+
SELECT FLOAT64(JSON_QUERY(JSON '{"vo2_max": 39.1, "age": 18}', "$.vo2_max")) AS vo2_max;

+---------+
| vo2_max |
+---------+
| 39.1    |
+---------+
SELECT FLOAT64(JSON '18446744073709551615', wide_number_mode=>'round') as result;

+------------------------+
| result                 |
+------------------------+
| 1.8446744073709552e+19 |
+------------------------+
SELECT FLOAT64(JSON '18446744073709551615') as result;

+------------------------+
| result                 |
+------------------------+
| 1.8446744073709552e+19 |
+------------------------+

The following examples show how invalid requests are handled:

-- An error is thrown if JSON is not of type FLOAT64.
SELECT FLOAT64(JSON '"strawberry"') AS result;
SELECT FLOAT64(JSON 'null') AS result;

-- An error is thrown because `wide_number_mode` is case-sensitive and not "exact" or "round".
SELECT FLOAT64(JSON '123.4', wide_number_mode=>'EXACT') as result;
SELECT FLOAT64(JSON '123.4', wide_number_mode=>'exac') as result;

-- An error is thrown because the number cannot be converted to DOUBLE without loss of precision
SELECT FLOAT64(JSON '18446744073709551615', wide_number_mode=>'exact') as result;

-- Returns a SQL NULL
SELECT SAFE.FLOAT64(JSON '"strawberry"') AS result;

JSON_TYPE

JSON_TYPE(json_expr)

Description

Takes a JSON expression and returns the type of the outermost JSON value as a SQL STRING. The names of these JSON types can be returned:

  • object
  • array
  • string
  • number
  • boolean
  • null

If the expression is SQL NULL, the function returns SQL NULL. If the extracted JSON value is not a valid JSON type, an error is produced.

  • json_expr: JSON. For example:

    JSON '{"name": "sky", "color" : "blue"}'
    

Return type

STRING

Examples

SELECT json_val, JSON_TYPE(json_val) AS type
FROM
  UNNEST(
    [
      JSON '"apple"',
      JSON '10',
      JSON '3.14',
      JSON 'null',
      JSON '{"city": "New York", "State": "NY"}',
      JSON '["apple", "banana"]',
      JSON 'false'
    ]
  ) AS json_val;

+----------------------------------+---------+
| json_val                         | type    |
+----------------------------------+---------+
| "apple"                          | string  |
| 10                               | number  |
| 3.14                             | number  |
| null                             | null    |
| {"State":"NY","city":"New York"} | object  |
| ["apple","banana"]               | array   |
| false                            | boolean |
+----------------------------------+---------+

JSON encodings

The following table includes common encodings that are used when a SQL value is encoded as JSON value with the TO_JSON_STRING or TO_JSON function.

From SQLTo JSONExamples
NULL

null

SQL input: NULL
JSON output: null
BOOL boolean SQL input: TRUE
JSON output: true

SQL input: FALSE
JSON output: false
INT64

(TO_JSON_STRING only)

number or string

Encoded as a number when the value is in the range of [-253, 253], which is the range of integers that can be represented losslessly as IEEE 754 double-precision floating point numbers. A value outside of this range is encoded as a string.

SQL input: 9007199254740992
JSON output: 9007199254740992

SQL input: 9007199254740993
JSON output: "9007199254740993"
INT64

(TO_JSON only)

number or string

If the stringify_wide_numbers argument is TRUE and the value is outside of the FLOAT64 type domain, the value is encoded as a string. If the value cannot be stored in JSON without loss of precision, the function fails. Otherwise, the value is encoded as a number.

If the stringify_wide_numbers is not used or is FALSE, numeric values outside of the `FLOAT64` type domain are not encoded as strings, but are stored as JSON numbers. If a numerical value cannot be stored in JSON without loss of precision, an error is thrown.

SQL input: 9007199254740992
JSON output: 9007199254740992

SQL input: 9007199254740993
JSON output: 9007199254740993

SQL input with stringify_wide_numbers=>TRUE: 9007199254740992
JSON output: 9007199254740992

SQL input with stringify_wide_numbers=>TRUE: 9007199254740993
JSON output: "9007199254740993"
NUMERIC
BIGNUMERIC

(TO_JSON_STRING only)

number or string

Encoded as a number when the value is in the range of [-253, 253] and has no fractional part. A value outside of this range is encoded as a string.

SQL input: -1
JSON output: -1

SQL input: 0
JSON output: 0

SQL input: 9007199254740993
JSON output: "9007199254740993"

SQL input: 123.56
JSON output: "123.56"
NUMERIC
BIGNUMERIC

(TO_JSON only)

number or string

If the stringify_wide_numbers argument is TRUE and the value is outside of the FLOAT64 type domain, it is encoded as a string. Otherwise, it's encoded as a number.

SQL input: -1
JSON output: -1

SQL input: 0
JSON output: 0

SQL input: 9007199254740993
JSON output: 9007199254740993

SQL input: 123.56
JSON output: 123.56

SQL input with stringify_wide_numbers=>TRUE: 9007199254740993
JSON output: "9007199254740993"

SQL input with stringify_wide_numbers=>TRUE: 123.56
JSON output: 123.56
FLOAT64

number or string

+/-inf and NaN are encoded as Infinity, -Infinity, and NaN. Otherwise, this value is encoded as a number.

SQL input: 1.0
JSON output: 1

SQL input: 9007199254740993
JSON output: 9007199254740993

SQL input: "+inf"
JSON output: "Infinity"

SQL input: "-inf"
JSON output: "-Infinity"

SQL input: "NaN"
JSON output: "NaN"
STRING

string

Encoded as a string, escaped according to the JSON standard. Specifically, ", \, and the control characters from U+0000 to U+001F are escaped.

SQL input: "abc"
JSON output: "abc"

SQL input: "\"abc\""
JSON output: "\"abc\""
BYTES

string

Uses RFC 4648 Base64 data encoding.

SQL input: b"Google"
JSON output: "R29vZ2xl"
DATE string SQL input: DATE '2017-03-06'
JSON output: "2017-03-06"
TIMESTAMP

string

Encoded as ISO 8601 date and time, where T separates the date and time and Z (Zulu/UTC) represents the time zone.

SQL input: TIMESTAMP '2017-03-06 12:34:56.789012'
JSON output: "2017-03-06T12:34:56.789012Z"
DATETIME

string

Encoded as ISO 8601 date and time, where T separates the date and time.

SQL input: DATETIME '2017-03-06 12:34:56.789012'
JSON output: "2017-03-06T12:34:56.789012"
TIME

string

Encoded as ISO 8601 time.

SQL input: TIME '12:34:56.789012'
JSON output: "12:34:56.789012"
JSON

data of the input JSON

SQL input: JSON '{"item": "pen", "price": 10}'
JSON output: {"item":"pen", "price":10}

SQL input:[1, 2, 3]
JSON output:[1, 2, 3]
ARRAY

array

Can contain zero or more elements.

SQL input: ["red", "blue", "green"]
JSON output: ["red","blue","green"]

SQL input:[1, 2, 3]
JSON output:[1,2,3]
STRUCT

object

The object can contain zero or more key/value pairs. Each value is formatted according to its type.

For TO_JSON, a field is included in the output string and any duplicates of this field are omitted. For TO_JSON_STRING, a field and any duplicates of this field are included in the output string.

Anonymous fields are represented with "".

Invalid UTF-8 field names might result in unparseable JSON. String values are escaped according to the JSON standard. Specifically, ", \, and the control characters from U+0000 to U+001F are escaped.

SQL input: STRUCT(12 AS purchases, TRUE AS inStock)
JSON output: {"inStock": true,"purchases":12}

JSONPath format

With the JSONPath format, you can identify the values you want to obtain from a JSON-formatted string. The JSONPath format supports these operators:

OperatorDescriptionExamples
$ Root object or element. The JSONPath format must start with this operator, which refers to the outermost level of the JSON-formatted string.

JSON-formatted string:
'{"class" : {"students" : [{"name" : "Jane"}]}}'

JSON path:
"$"

JSON result:
{"class":{"students":[{"name":"Jane"}]}}

. Child operator. You can identify child values using dot-notation.

JSON-formatted string:
'{"class" : {"students" : [{"name" : "Jane"}]}}'

JSON path:
"$.class.students"

JSON result:
[{"name":"Jane"}]

[] Subscript operator. If the JSON object is an array, you can use brackets to specify the array index.

JSON-formatted string:
'{"class" : {"students" : [{"name" : "Jane"}]}}'

JSON path:
"$.class.students[0]"

JSON result:
{"name":"Jane"}

If a key in a JSON functions contains a JSON format operator, refer to each JSON function for how to escape them.

A JSON function returns NULL if the JSONPath format does not match a value in a JSON-formatted string. If the selected value for a scalar function is not scalar, such as an object or an array, the function returns NULL. If the JSONPath format is invalid, an error is produced.

Array functions

ARRAY

ARRAY(subquery)

Description

The ARRAY function returns an ARRAY with one element for each row in a subquery.

If subquery produces a SQL table, the table must have exactly one column. Each element in the output ARRAY is the value of the single column of a row in the table.

If subquery produces a value table, then each element in the output ARRAY is the entire corresponding row of the value table.

Constraints

  • Subqueries are unordered, so the elements of the output ARRAY are not guaranteed to preserve any order in the source table for the subquery. However, if the subquery includes an ORDER BY clause, the ARRAY function will return an ARRAY that honors that clause.
  • If the subquery returns more than one column, the ARRAY function returns an error.
  • If the subquery returns an ARRAY typed column or ARRAY typed rows, the ARRAY function returns an error: BigQuery does not support ARRAYs with elements of type ARRAY.
  • If the subquery returns zero rows, the ARRAY function returns an empty ARRAY. It never returns a NULL ARRAY.

Return type

ARRAY

Examples

SELECT ARRAY
  (SELECT 1 UNION ALL
   SELECT 2 UNION ALL
   SELECT 3) AS new_array;

+-----------+
| new_array |
+-----------+
| [1, 2, 3] |
+-----------+

To construct an ARRAY from a subquery that contains multiple columns, change the subquery to use SELECT AS STRUCT. Now the ARRAY function will return an ARRAY of STRUCTs. The ARRAY will contain one STRUCT for each row in the subquery, and each of these STRUCTs will contain a field for each column in that row.

SELECT
  ARRAY
    (SELECT AS STRUCT 1, 2, 3
     UNION ALL SELECT AS STRUCT 4, 5, 6) AS new_array;

+------------------------+
| new_array              |
+------------------------+
| [{1, 2, 3}, {4, 5, 6}] |
+------------------------+

Similarly, to construct an ARRAY from a subquery that contains one or more ARRAYs, change the subquery to use SELECT AS STRUCT.

SELECT ARRAY
  (SELECT AS STRUCT [1, 2, 3] UNION ALL
   SELECT AS STRUCT [4, 5, 6]) AS new_array;

+----------------------------+
| new_array                  |
+----------------------------+
| [{[1, 2, 3]}, {[4, 5, 6]}] |
+----------------------------+

ARRAY_CONCAT

ARRAY_CONCAT(array_expression[, ...])

Description

Concatenates one or more arrays with the same element type into a single array.

The function returns NULL if any input argument is NULL.

Return type

ARRAY

Examples

SELECT ARRAY_CONCAT([1, 2], [3, 4], [5, 6]) as count_to_six;

+--------------------------------------------------+
| count_to_six                                     |
+--------------------------------------------------+
| [1, 2, 3, 4, 5, 6]                               |
+--------------------------------------------------+

ARRAY_LENGTH

ARRAY_LENGTH(array_expression)

Description

Returns the size of the array. Returns 0 for an empty array. Returns NULL if the array_expression is NULL.

Return type

INT64

Examples

WITH items AS
  (SELECT ["coffee", NULL, "milk" ] as list
  UNION ALL
  SELECT ["cake", "pie"] as list)
SELECT ARRAY_TO_STRING(list, ', ', 'NULL'), ARRAY_LENGTH(list) AS size
FROM items
ORDER BY size DESC;

+--------------------+------+
| list               | size |
+--------------------+------+
| coffee, NULL, milk | 3    |
| cake, pie          | 2    |
+--------------------+------+

ARRAY_TO_STRING

ARRAY_TO_STRING(array_expression, delimiter[, null_text])

Description

Returns a concatenation of the elements in array_expression as a STRING. The value for array_expression can either be an array of STRING or BYTES data types.

If the null_text parameter is used, the function replaces any NULL values in the array with the value of null_text.

If the null_text parameter is not used, the function omits the NULL value and its preceding delimiter.

Examples

WITH items AS
  (SELECT ['coffee', 'tea', 'milk' ] as list
  UNION ALL
  SELECT ['cake', 'pie', NULL] as list)

SELECT ARRAY_TO_STRING(list, '--') AS text
FROM items;

+--------------------------------+
| text                           |
+--------------------------------+
| coffee--tea--milk              |
| cake--pie                      |
+--------------------------------+
WITH items AS
  (SELECT ['coffee', 'tea', 'milk' ] as list
  UNION ALL
  SELECT ['cake', 'pie', NULL] as list)

SELECT ARRAY_TO_STRING(list, '--', 'MISSING') AS text
FROM items;

+--------------------------------+
| text                           |
+--------------------------------+
| coffee--tea--milk              |
| cake--pie--MISSING             |
+--------------------------------+

GENERATE_ARRAY

GENERATE_ARRAY(start_expression, end_expression[, step_expression])

Description

Returns an array of values. The start_expression and end_expression parameters determine the inclusive start and end of the array.

The GENERATE_ARRAY function accepts the following data types as inputs:

  • INT64
  • NUMERIC
  • BIGNUMERIC
  • FLOAT64

The step_expression parameter determines the increment used to generate array values. The default value for this parameter is 1.

This function returns an error if step_expression is set to 0, or if any input is NaN.

If any argument is NULL, the function will return a NULL array.

Return Data Type

ARRAY

Examples

The following returns an array of integers, with a default step of 1.

SELECT GENERATE_ARRAY(1, 5) AS example_array;

+-----------------+
| example_array   |
+-----------------+
| [1, 2, 3, 4, 5] |
+-----------------+

The following returns an array using a user-specified step size.

SELECT GENERATE_ARRAY(0, 10, 3) AS example_array;

+---------------+
| example_array |
+---------------+
| [0, 3, 6, 9]  |
+---------------+

The following returns an array using a negative value, -3 for its step size.

SELECT GENERATE_ARRAY(10, 0, -3) AS example_array;

+---------------+
| example_array |
+---------------+
| [10, 7, 4, 1] |
+---------------+

The following returns an array using the same value for the start_expression and end_expression.

SELECT GENERATE_ARRAY(4, 4, 10) AS example_array;

+---------------+
| example_array |
+---------------+
| [4]           |
+---------------+

The following returns an empty array, because the start_expression is greater than the end_expression, and the step_expression value is positive.

SELECT GENERATE_ARRAY(10, 0, 3) AS example_array;

+---------------+
| example_array |
+---------------+
| []            |
+---------------+

The following returns a NULL array because end_expression is NULL.

SELECT GENERATE_ARRAY(5, NULL, 1) AS example_array;

+---------------+
| example_array |
+---------------+
| NULL          |
+---------------+

The following returns multiple arrays.

SELECT GENERATE_ARRAY(start, 5) AS example_array
FROM UNNEST([3, 4, 5]) AS start;

+---------------+
| example_array |
+---------------+
| [3, 4, 5]     |
| [4, 5]        |
| [5]           |
+---------------+

GENERATE_DATE_ARRAY

GENERATE_DATE_ARRAY(start_date, end_date[, INTERVAL INT64_expr date_part])

Description

Returns an array of dates. The start_date and end_date parameters determine the inclusive start and end of the array.

The GENERATE_DATE_ARRAY function accepts the following data types as inputs:

  • start_date must be a DATE
  • end_date must be a DATE
  • INT64_expr must be an INT64
  • date_part must be either DAY, WEEK, MONTH, QUARTER, or YEAR.

The INT64_expr parameter determines the increment used to generate dates. The default value for this parameter is 1 day.

This function returns an error if INT64_expr is set to 0.

Return Data Type

An ARRAY containing 0 or more DATE values.

Examples

The following returns an array of dates, with a default step of 1.

SELECT GENERATE_DATE_ARRAY('2016-10-05', '2016-10-08') AS example;

+--------------------------------------------------+
| example                                          |
+--------------------------------------------------+
| [2016-10-05, 2016-10-06, 2016-10-07, 2016-10-08] |
+--------------------------------------------------+

The following returns an array using a user-specified step size.

SELECT GENERATE_DATE_ARRAY(
 '2016-10-05', '2016-10-09', INTERVAL 2 DAY) AS example;

+--------------------------------------+
| example                              |
+--------------------------------------+
| [2016-10-05, 2016-10-07, 2016-10-09] |
+--------------------------------------+

The following returns an array using a negative value, -3 for its step size.

SELECT GENERATE_DATE_ARRAY('2016-10-05',
  '2016-10-01', INTERVAL -3 DAY) AS example;

+--------------------------+
| example                  |
+--------------------------+
| [2016-10-05, 2016-10-02] |
+--------------------------+

The following returns an array using the same value for the start_dateand end_date.

SELECT GENERATE_DATE_ARRAY('2016-10-05',
  '2016-10-05', INTERVAL 8 DAY) AS example;

+--------------+
| example      |
+--------------+
| [2016-10-05] |
+--------------+

The following returns an empty array, because the start_date is greater than the end_date, and the step value is positive.

SELECT GENERATE_DATE_ARRAY('2016-10-05',
  '2016-10-01', INTERVAL 1 DAY) AS example;

+---------+
| example |
+---------+
| []      |
+---------+

The following returns a NULL array, because one of its inputs is NULL.

SELECT GENERATE_DATE_ARRAY('2016-10-05', NULL) AS example;

+---------+
| example |
+---------+
| NULL    |
+---------+

The following returns an array of dates, using MONTH as the date_part interval:

SELECT GENERATE_DATE_ARRAY('2016-01-01',
  '2016-12-31', INTERVAL 2 MONTH) AS example;

+--------------------------------------------------------------------------+
| example                                                                  |
+--------------------------------------------------------------------------+
| [2016-01-01, 2016-03-01, 2016-05-01, 2016-07-01, 2016-09-01, 2016-11-01] |
+--------------------------------------------------------------------------+

The following uses non-constant dates to generate an array.

SELECT GENERATE_DATE_ARRAY(date_start, date_end, INTERVAL 1 WEEK) AS date_range
FROM (
  SELECT DATE '2016-01-01' AS date_start, DATE '2016-01-31' AS date_end
  UNION ALL SELECT DATE "2016-04-01", DATE "2016-04-30"
  UNION ALL SELECT DATE "2016-07-01", DATE "2016-07-31"
  UNION ALL SELECT DATE "2016-10-01", DATE "2016-10-31"
) AS items;

+--------------------------------------------------------------+
| date_range                                                   |
+--------------------------------------------------------------+
| [2016-01-01, 2016-01-08, 2016-01-15, 2016-01-22, 2016-01-29] |
| [2016-04-01, 2016-04-08, 2016-04-15, 2016-04-22, 2016-04-29] |
| [2016-07-01, 2016-07-08, 2016-07-15, 2016-07-22, 2016-07-29] |
| [2016-10-01, 2016-10-08, 2016-10-15, 2016-10-22, 2016-10-29] |
+--------------------------------------------------------------+

GENERATE_TIMESTAMP_ARRAY

GENERATE_TIMESTAMP_ARRAY(start_timestamp, end_timestamp,
                         INTERVAL step_expression date_part)

Description

Returns an ARRAY of TIMESTAMPS separated by a given interval. The start_timestamp and end_timestamp parameters determine the inclusive lower and upper bounds of the ARRAY.

The GENERATE_TIMESTAMP_ARRAY function accepts the following data types as inputs:

  • start_timestamp: TIMESTAMP
  • end_timestamp: TIMESTAMP
  • step_expression: INT64
  • Allowed date_part values are: MICROSECOND, MILLISECOND, SECOND, MINUTE, HOUR, or DAY.

The step_expression parameter determines the increment used to generate timestamps.

Return Data Type

An ARRAY containing 0 or more TIMESTAMP values.

Examples

The following example returns an ARRAY of TIMESTAMPs at intervals of 1 day.

SELECT GENERATE_TIMESTAMP_ARRAY('2016-10-05 00:00:00', '2016-10-07 00:00:00',
                                INTERVAL 1 DAY) AS timestamp_array;

+--------------------------------------------------------------------------+
| timestamp_array                                                          |
+--------------------------------------------------------------------------+
| [2016-10-05 00:00:00+00, 2016-10-06 00:00:00+00, 2016-10-07 00:00:00+00] |
+--------------------------------------------------------------------------+

The following example returns an ARRAY of TIMESTAMPs at intervals of 1 second.

SELECT GENERATE_TIMESTAMP_ARRAY('2016-10-05 00:00:00', '2016-10-05 00:00:02',
                                INTERVAL 1 SECOND) AS timestamp_array;

+--------------------------------------------------------------------------+
| timestamp_array                                                          |
+--------------------------------------------------------------------------+
| [2016-10-05 00:00:00+00, 2016-10-05 00:00:01+00, 2016-10-05 00:00:02+00] |
+--------------------------------------------------------------------------+

The following example returns an ARRAY of TIMESTAMPS with a negative interval.

SELECT GENERATE_TIMESTAMP_ARRAY('2016-10-06 00:00:00', '2016-10-01 00:00:00',
                                INTERVAL -2 DAY) AS timestamp_array;

+--------------------------------------------------------------------------+
| timestamp_array                                                          |
+--------------------------------------------------------------------------+
| [2016-10-06 00:00:00+00, 2016-10-04 00:00:00+00, 2016-10-02 00:00:00+00] |
+--------------------------------------------------------------------------+

The following example returns an ARRAY with a single element, because start_timestamp and end_timestamp have the same value.

SELECT GENERATE_TIMESTAMP_ARRAY('2016-10-05 00:00:00', '2016-10-05 00:00:00',
                                INTERVAL 1 HOUR) AS timestamp_array;

+--------------------------+
| timestamp_array          |
+--------------------------+
| [2016-10-05 00:00:00+00] |
+--------------------------+

The following example returns an empty ARRAY, because start_timestamp is later than end_timestamp.

SELECT GENERATE_TIMESTAMP_ARRAY('2016-10-06 00:00:00', '2016-10-05 00:00:00',
                                INTERVAL 1 HOUR) AS timestamp_array;

+-----------------+
| timestamp_array |
+-----------------+
| []              |
+-----------------+

The following example returns a null ARRAY, because one of the inputs is NULL.

SELECT GENERATE_TIMESTAMP_ARRAY('2016-10-05 00:00:00', NULL, INTERVAL 1 HOUR)
  AS timestamp_array;

+-----------------+
| timestamp_array |
+-----------------+
| NULL            |
+-----------------+

The following example generates ARRAYs of TIMESTAMPs from columns containing values for start_timestamp and end_timestamp.

SELECT GENERATE_TIMESTAMP_ARRAY(start_timestamp, end_timestamp, INTERVAL 1 HOUR)
  AS timestamp_array
FROM
  (SELECT
    TIMESTAMP '2016-10-05 00:00:00' AS start_timestamp,
    TIMESTAMP '2016-10-05 02:00:00' AS end_timestamp
   UNION ALL
   SELECT
    TIMESTAMP '2016-10-05 12:00:00' AS start_timestamp,
    TIMESTAMP '2016-10-05 14:00:00' AS end_timestamp
   UNION ALL
   SELECT
    TIMESTAMP '2016-10-05 23:59:00' AS start_timestamp,
    TIMESTAMP '2016-10-06 01:59:00' AS end_timestamp);

+--------------------------------------------------------------------------+
| timestamp_array                                                          |
+--------------------------------------------------------------------------+
| [2016-10-05 00:00:00+00, 2016-10-05 01:00:00+00, 2016-10-05 02:00:00+00] |
| [2016-10-05 12:00:00+00, 2016-10-05 13:00:00+00, 2016-10-05 14:00:00+00] |
| [2016-10-05 23:59:00+00, 2016-10-06 00:59:00+00, 2016-10-06 01:59:00+00] |
+--------------------------------------------------------------------------+

ARRAY_REVERSE

ARRAY_REVERSE(value)

Description

Returns the input ARRAY with elements in reverse order.

Return type

ARRAY

Examples

WITH example AS (
  SELECT [1, 2, 3] AS arr UNION ALL
  SELECT [4, 5] AS arr UNION ALL
  SELECT [] AS arr
)
SELECT
  arr,
  ARRAY_REVERSE(arr) AS reverse_arr
FROM example;

+-----------+-------------+
| arr       | reverse_arr |
+-----------+-------------+
| [1, 2, 3] | [3, 2, 1]   |
| [4, 5]    | [5, 4]      |
| []        | []          |
+-----------+-------------+

OFFSET and ORDINAL

For information about using OFFSET and ORDINAL with arrays, see Array subscript operator and Accessing array elements.

Date functions

BigQuery supports the following DATE functions.

CURRENT_DATE

CURRENT_DATE([time_zone])

Description

Returns the current date as of the specified or default time zone. Parentheses are optional when called with no arguments.

This function supports an optional time_zone parameter. This parameter is a string representing the time zone to use. If no time zone is specified, the default time zone, UTC, is used. See Time zone definitions for information on how to specify a time zone.

If the time_zone parameter evaluates to NULL, this function returns NULL.

Return Data Type

DATE

Example

SELECT CURRENT_DATE() AS the_date;

+--------------+
| the_date     |
+--------------+
| 2016-12-25   |
+--------------+

When a column named current_date is present, the column name and the function call without parentheses are ambiguous. To ensure the function call, add parentheses; to ensure the column name, qualify it with its range variable. For example, the following query will select the function in the the_date column and the table column in the current_date column.

WITH t AS (SELECT 'column value' AS `current_date`)
SELECT current_date() AS the_date, t.current_date FROM t;

+------------+--------------+
| the_date   | current_date |
+------------+--------------+
| 2016-12-25 | column value |
+------------+--------------+
EXTRACT(part FROM date_expression)

Description

Returns the value corresponding to the specified date part. The part must be one of:

  • DAYOFWEEK: Returns values in the range [1,7] with Sunday as the first day of the week.
  • DAY
  • DAYOFYEAR
  • WEEK: Returns the week number of the date in the range [0, 53]. Weeks begin with Sunday, and dates prior to the first Sunday of the year are in week 0.
  • WEEK(<WEEKDAY>): Returns the week number of the date in the range [0, 53]. Weeks begin on WEEKDAY. Dates prior to the first WEEKDAY of the year are in week 0. Valid values for WEEKDAY are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK: Returns the ISO 8601 week number of the date_expression. ISOWEEKs begin on Monday. Return values are in the range [1, 53]. The first ISOWEEK of each ISO year begins on the Monday before the first Thursday of the Gregorian calendar year.
  • MONTH
  • QUARTER: Returns values in the range [1,4].
  • YEAR
  • ISOYEAR: Returns the ISO 8601 week-numbering year, which is the Gregorian calendar year containing the Thursday of the week to which date_expression belongs.

Return Data Type

INT64

Examples

In the following example, EXTRACT returns a value corresponding to the DAY date part.

SELECT EXTRACT(DAY FROM DATE '2013-12-25') AS the_day;

+---------+
| the_day |
+---------+
| 25      |
+---------+

In the following example, EXTRACT returns values corresponding to different date parts from a column of dates near the end of the year.

SELECT
  date,
  EXTRACT(ISOYEAR FROM date) AS isoyear,
  EXTRACT(ISOWEEK FROM date) AS isoweek,
  EXTRACT(YEAR FROM date) AS year,
  EXTRACT(WEEK FROM date) AS week
FROM UNNEST(GENERATE_DATE_ARRAY('2015-12-23', '2016-01-09')) AS date
ORDER BY date;
+------------+---------+---------+------+------+
| date       | isoyear | isoweek | year | week |
+------------+---------+---------+------+------+
| 2015-12-23 | 2015    | 52      | 2015 | 51   |
| 2015-12-24 | 2015    | 52      | 2015 | 51   |
| 2015-12-25 | 2015    | 52      | 2015 | 51   |
| 2015-12-26 | 2015    | 52      | 2015 | 51   |
| 2015-12-27 | 2015    | 52      | 2015 | 52   |
| 2015-12-28 | 2015    | 53      | 2015 | 52   |
| 2015-12-29 | 2015    | 53      | 2015 | 52   |
| 2015-12-30 | 2015    | 53      | 2015 | 52   |
| 2015-12-31 | 2015    | 53      | 2015 | 52   |
| 2016-01-01 | 2015    | 53      | 2016 | 0    |
| 2016-01-02 | 2015    | 53      | 2016 | 0    |
| 2016-01-03 | 2015    | 53      | 2016 | 1    |
| 2016-01-04 | 2016    | 1       | 2016 | 1    |
| 2016-01-05 | 2016    | 1       | 2016 | 1    |
| 2016-01-06 | 2016    | 1       | 2016 | 1    |
| 2016-01-07 | 2016    | 1       | 2016 | 1    |
| 2016-01-08 | 2016    | 1       | 2016 | 1    |
| 2016-01-09 | 2016    | 1       | 2016 | 1    |
+------------+---------+---------+------+------+

In the following example, date_expression falls on a Sunday. EXTRACT calculates the first column using weeks that begin on Sunday, and it calculates the second column using weeks that begin on Monday.

WITH table AS (SELECT DATE('2017-11-05') AS date)
SELECT
  date,
  EXTRACT(WEEK(SUNDAY) FROM date) AS week_sunday,
  EXTRACT(WEEK(MONDAY) FROM date) AS week_monday FROM table;

+------------+-------------+-------------+
| date       | week_sunday | week_monday |
+------------+-------------+-------------+
| 2017-11-05 | 45          | 44          |
+------------+-------------+-------------+

DATE

1. DATE(year, month, day)
2. DATE(timestamp_expression[, time_zone])
3. DATE(datetime_expression)

Description

  1. Constructs a DATE from INT64 values representing the year, month, and day.
  2. Extracts the DATE from a TIMESTAMP expression. It supports an optional parameter to specify a time zone. If no time zone is specified, the default time zone, UTC, is used.
  3. Extracts the DATE from a DATETIME expression.

Return Data Type

DATE

Example

SELECT
  DATE(2016, 12, 25) AS date_ymd,
  DATE(DATETIME "2016-12-25 23:59:59") AS date_dt,
  DATE(TIMESTAMP "2016-12-25 05:30:00+07", "America/Los_Angeles") AS date_tstz;

+------------+------------+------------+
| date_ymd   | date_dt    | date_tstz  |
+------------+------------+------------+
| 2016-12-25 | 2016-12-25 | 2016-12-24 |
+------------+------------+------------+

DATE_ADD

DATE_ADD(date_expression, INTERVAL int64_expression date_part)

Description

Adds a specified time interval to a DATE.

DATE_ADD supports the following date_part values:

  • DAY
  • WEEK. Equivalent to 7 DAYs.
  • MONTH
  • QUARTER
  • YEAR

Special handling is required for MONTH, QUARTER, and YEAR parts when the date is at (or near) the last day of the month. If the resulting month has fewer days than the original date's day, then the resulting date is the last date of that month.

Return Data Type

DATE

Example

SELECT DATE_ADD(DATE "2008-12-25", INTERVAL 5 DAY) AS five_days_later;

+--------------------+
| five_days_later    |
+--------------------+
| 2008-12-30         |
+--------------------+

DATE_SUB

DATE_SUB(date_expression, INTERVAL int64_expression date_part)

Description

Subtracts a specified time interval from a DATE.

DATE_SUB supports the following date_part values:

  • DAY
  • WEEK. Equivalent to 7 DAYs.
  • MONTH
  • QUARTER
  • YEAR

Special handling is required for MONTH, QUARTER, and YEAR parts when the date is at (or near) the last day of the month. If the resulting month has fewer days than the original date's day, then the resulting date is the last date of that month.

Return Data Type

DATE

Example

SELECT DATE_SUB(DATE "2008-12-25", INTERVAL 5 DAY) AS five_days_ago;

+---------------+
| five_days_ago |
+---------------+
| 2008-12-20    |
+---------------+

DATE_DIFF

DATE_DIFF(date_expression_a, date_expression_b, date_part)

Description

Returns the whole number of specified date_part intervals between two DATE objects (date_expression_a - date_expression_b). If the first DATE is earlier than the second one, the output is negative.

DATE_DIFF supports the following date_part values:

  • DAY
  • WEEK This date part begins on Sunday.
  • WEEK(<WEEKDAY>): This date part begins on WEEKDAY. Valid values for WEEKDAY are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK: Uses ISO 8601 week boundaries. ISO weeks begin on Monday.
  • MONTH, except when the first two arguments are TIMESTAMP objects.
  • QUARTER
  • YEAR
  • ISOYEAR: Uses the ISO 8601 week-numbering year boundary. The ISO year boundary is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

Return Data Type

INT64

Example

SELECT DATE_DIFF(DATE '2010-07-07', DATE '2008-12-25', DAY) AS days_diff;

+-----------+
| days_diff |
+-----------+
| 559       |
+-----------+
SELECT
  DATE_DIFF(DATE '2017-10-15', DATE '2017-10-14', DAY) AS days_diff,
  DATE_DIFF(DATE '2017-10-15', DATE '2017-10-14', WEEK) AS weeks_diff;

+-----------+------------+
| days_diff | weeks_diff |
+-----------+------------+
| 1         | 1          |
+-----------+------------+

The example above shows the result of DATE_DIFF for two days in succession. DATE_DIFF with the date part WEEK returns 1 because DATE_DIFF counts the number of date part boundaries in this range of dates. Each WEEK begins on Sunday, so there is one date part boundary between Saturday, 2017-10-14 and Sunday, 2017-10-15.

The following example shows the result of DATE_DIFF for two dates in different years. DATE_DIFF with the date part YEAR returns 3 because it counts the number of Gregorian calendar year boundaries between the two dates. DATE_DIFF with the date part ISOYEAR returns 2 because the second date belongs to the ISO year 2015. The first Thursday of the 2015 calendar year was 2015-01-01, so the ISO year 2015 begins on the preceding Monday, 2014-12-29.

SELECT
  DATE_DIFF('2017-12-30', '2014-12-30', YEAR) AS year_diff,
  DATE_DIFF('2017-12-30', '2014-12-30', ISOYEAR) AS isoyear_diff;

+-----------+--------------+
| year_diff | isoyear_diff |
+-----------+--------------+
| 3         | 2            |
+-----------+--------------+

The following example shows the result of DATE_DIFF for two days in succession. The first date falls on a Monday and the second date falls on a Sunday. DATE_DIFF with the date part WEEK returns 0 because this date part uses weeks that begin on Sunday. DATE_DIFF with the date part WEEK(MONDAY) returns 1. DATE_DIFF with the date part ISOWEEK also returns 1 because ISO weeks begin on Monday.

SELECT
  DATE_DIFF('2017-12-18', '2017-12-17', WEEK) AS week_diff,
  DATE_DIFF('2017-12-18', '2017-12-17', WEEK(MONDAY)) AS week_weekday_diff,
  DATE_DIFF('2017-12-18', '2017-12-17', ISOWEEK) AS isoweek_diff;

+-----------+-------------------+--------------+
| week_diff | week_weekday_diff | isoweek_diff |
+-----------+-------------------+--------------+
| 0         | 1                 | 1            |
+-----------+-------------------+--------------+

DATE_TRUNC

DATE_TRUNC(date_expression, date_part)

Description

Truncates a DATE value to the granularity of date_part. The DATE value is always rounded to the beginning of date_part, which can be one of the following:

  • DAY: The day in the Gregorian calendar year that contains the DATE value.
  • WEEK: The first day of the week in the week that contains the DATE value. Weeks begin on Sundays. WEEK is equivalent to WEEK(SUNDAY).
  • WEEK(WEEKDAY): The first day of the week in the week that contains the DATE value. Weeks begin on WEEKDAY. WEEKDAY must be one of the following: SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, or SATURDAY.
  • ISOWEEK: The first day of the ISO 8601 week in the ISO week that contains the DATE value. The ISO week begins on Monday. The first ISO week of each ISO year contains the first Thursday of the corresponding Gregorian calendar year.
  • MONTH: The first day of the month in the month that contains the DATE value.
  • QUARTER: The first day of the quarter in the quarter that contains the DATE value.
  • YEAR: The first day of the year in the year that contains the DATE value.
  • ISOYEAR: The first day of the ISO 8601 week-numbering year in the ISO year that contains the DATE value. The ISO year is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

Return Data Type

DATE

Examples

SELECT DATE_TRUNC(DATE '2008-12-25', MONTH) AS month;

+------------+
| month      |
+------------+
| 2008-12-01 |
+------------+

In the following example, the original date falls on a Sunday. Because the date_part is WEEK(MONDAY), DATE_TRUNC returns the DATE for the preceding Monday.

SELECT date AS original, DATE_TRUNC(date, WEEK(MONDAY)) AS truncated
FROM (SELECT DATE('2017-11-05') AS date);

+------------+------------+
| original   | truncated  |
+------------+------------+
| 2017-11-05 | 2017-10-30 |
+------------+------------+

In the following example, the original date_expression is in the Gregorian calendar year 2015. However, DATE_TRUNC with the ISOYEAR date part truncates the date_expression to the beginning of the ISO year, not the Gregorian calendar year. The first Thursday of the 2015 calendar year was 2015-01-01, so the ISO year 2015 begins on the preceding Monday, 2014-12-29. Therefore the ISO year boundary preceding the date_expression 2015-06-15 is 2014-12-29.

SELECT
  DATE_TRUNC('2015-06-15', ISOYEAR) AS isoyear_boundary,
  EXTRACT(ISOYEAR FROM DATE '2015-06-15') AS isoyear_number;

+------------------+----------------+
| isoyear_boundary | isoyear_number |
+------------------+----------------+
| 2014-12-29       | 2015           |
+------------------+----------------+

DATE_FROM_UNIX_DATE

DATE_FROM_UNIX_DATE(int64_expression)

Description

Interprets int64_expression as the number of days since 1970-01-01.

Return Data Type

DATE

Example

SELECT DATE_FROM_UNIX_DATE(14238) AS date_from_epoch;

+-----------------+
| date_from_epoch |
+-----------------+
| 2008-12-25      |
+-----------------+

FORMAT_DATE

FORMAT_DATE(format_string, date_expr)

Description

Formats the date_expr according to the specified format_string.

See Supported Format Elements For DATE for a list of format elements that this function supports.

Return Data Type

STRING

Examples

SELECT FORMAT_DATE("%x", DATE "2008-12-25") AS US_format;

+------------+
| US_format  |
+------------+
| 12/25/08   |
+------------+
SELECT FORMAT_DATE("%b-%d-%Y", DATE "2008-12-25") AS formatted;

+-------------+
| formatted   |
+-------------+
| Dec-25-2008 |
+-------------+
SELECT FORMAT_DATE("%b %Y", DATE "2008-12-25") AS formatted;

+-------------+
| formatted   |
+-------------+
| Dec 2008    |
+-------------+

LAST_DAY

LAST_DAY(date_expression[, date_part])

Description

Returns the last day from a date expression. This is commonly used to return the last day of the month.

You can optionally specify the date part for which the last day is returned. If this parameter is not used, the default value is MONTH. LAST_DAY supports the following values for date_part:

  • YEAR
  • QUARTER
  • MONTH
  • WEEK. Equivalent to 7 DAYs.
  • WEEK(<WEEKDAY>). <WEEKDAY> represents the starting day of the week. Valid values are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK. Uses ISO 8601 week boundaries. ISO weeks begin on Monday.
  • ISOYEAR. Uses the ISO 8601 week-numbering year boundary. The ISO year boundary is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

Return Data Type

DATE

Example

These both return the last day of the month:

SELECT LAST_DAY(DATE '2008-11-25', MONTH) AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-30 |
+------------+
SELECT LAST_DAY(DATE '2008-11-25') AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-30 |
+------------+

This returns the last day of the year:

SELECT LAST_DAY(DATE '2008-11-25', YEAR) AS last_day

+------------+
| last_day   |
+------------+
| 2008-12-31 |
+------------+

This returns the last day of the week for a week that starts on a Sunday:

SELECT LAST_DAY(DATE '2008-11-10', WEEK(SUNDAY)) AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-15 |
+------------+

This returns the last day of the week for a week that starts on a Monday:

SELECT LAST_DAY(DATE '2008-11-10', WEEK(MONDAY)) AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-16 |
+------------+

PARSE_DATE

PARSE_DATE(format_string, date_string)

Description

Converts a string representation of date to a DATE object.

format_string contains the format elements that define how date_string is formatted. Each element in date_string must have a corresponding element in format_string. The location of each element in format_string must match the location of each element in date_string.

-- This works because elements on both sides match.
SELECT PARSE_DATE("%A %b %e %Y", "Thursday Dec 25 2008")

-- This doesn't work because the year element is in different locations.
SELECT PARSE_DATE("%Y %A %b %e", "Thursday Dec 25 2008")

-- This doesn't work because one of the year elements is missing.
SELECT PARSE_DATE("%A %b %e", "Thursday Dec 25 2008")

-- This works because %F can find all matching elements in date_string.
SELECT PARSE_DATE("%F", "2000-12-30")

When using PARSE_DATE, keep the following in mind:

  • Unspecified fields. Any unspecified field is initialized from 1970-01-01.
  • Case insensitivity. Names, such as Monday, February, and so on, are case insensitive.
  • Whitespace. One or more consecutive white spaces in the format string matches zero or more consecutive white spaces in the date string. In addition, leading and trailing white spaces in the date string are always allowed -- even if they are not in the format string.
  • Format precedence. When two (or more) format elements have overlapping information (for example both %F and %Y affect the year), the last one generally overrides any earlier ones.

Return Data Type

DATE

Examples

This example converts a MM/DD/YY formatted string to a DATE object:

SELECT PARSE_DATE("%x", "12/25/08") AS parsed;

+------------+
| parsed     |
+------------+
| 2008-12-25 |
+------------+

This example converts a YYYYMMDD formatted string to a DATE object:

SELECT PARSE_DATE("%Y%m%d", "20081225") AS parsed;

+------------+
| parsed     |
+------------+
| 2008-12-25 |
+------------+

UNIX_DATE

UNIX_DATE(date_expression)

Description

Returns the number of days since 1970-01-01.

Return Data Type

INT64

Example

SELECT UNIX_DATE(DATE "2008-12-25") AS days_from_epoch;

+-----------------+
| days_from_epoch |
+-----------------+
| 14238           |
+-----------------+

Datetime functions

BigQuery supports the following DATETIME functions.

All outputs are automatically formatted as per ISO 8601, separating date and time with aT.

CURRENT_DATETIME

CURRENT_DATETIME([time_zone])

Description

Returns the current time as a DATETIME object. Parentheses are optional when called with no arguments.

This function supports an optional time_zone parameter. See Time zone definitions for information on how to specify a time zone.

Return Data Type

DATETIME

Example

SELECT CURRENT_DATETIME() as now;

+----------------------------+
| now                        |
+----------------------------+
| 2016-05-19T10:38:47.046465 |
+----------------------------+

When a column named current_datetime is present, the column name and the function call without parentheses are ambiguous. To ensure the function call, add parentheses; to ensure the column name, qualify it with its range variable. For example, the following query will select the function in the now column and the table column in the current_datetime column.

WITH t AS (SELECT 'column value' AS `current_datetime`)
SELECT current_datetime() as now, t.current_datetime FROM t;

+----------------------------+------------------+
| now                        | current_datetime |
+----------------------------+------------------+
| 2016-05-19T10:38:47.046465 | column value     |
+----------------------------+------------------+

DATETIME

1. DATETIME(year, month, day, hour, minute, second)
2. DATETIME(date_expression[, time_expression])
3. DATETIME(timestamp_expression [, time_zone])

Description

  1. Constructs a DATETIME object using INT64 values representing the year, month, day, hour, minute, and second.
  2. Constructs a DATETIME object using a DATE object and an optional TIME object.
  3. Constructs a DATETIME object using a TIMESTAMP object. It supports an optional parameter to specify a time zone. If no time zone is specified, the default time zone, UTC, is used.

Return Data Type

DATETIME

Example

SELECT
  DATETIME(2008, 12, 25, 05, 30, 00) as datetime_ymdhms,
  DATETIME(TIMESTAMP "2008-12-25 05:30:00+00", "America/Los_Angeles") as datetime_tstz;

+---------------------+---------------------+
| datetime_ymdhms     | datetime_tstz       |
+---------------------+---------------------+
| 2008-12-25T05:30:00 | 2008-12-24T21:30:00 |
+---------------------+---------------------+
EXTRACT(part FROM datetime_expression)

Description

Returns a value that corresponds to the specified part from a supplied datetime_expression.

Allowed part values are:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR
  • DAYOFWEEK: Returns values in the range [1,7] with Sunday as the first day of of the week.
  • DAY
  • DAYOFYEAR
  • WEEK: Returns the week number of the date in the range [0, 53]. Weeks begin with Sunday, and dates prior to the first Sunday of the year are in week 0.
  • WEEK(<WEEKDAY>): Returns the week number of datetime_expression in the range [0, 53]. Weeks begin on WEEKDAY. datetimes prior to the first WEEKDAY of the year are in week 0. Valid values for WEEKDAY are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK: Returns the ISO 8601 week number of the datetime_expression. ISOWEEKs begin on Monday. Return values are in the range [1, 53]. The first ISOWEEK of each ISO year begins on the Monday before the first Thursday of the Gregorian calendar year.
  • MONTH
  • QUARTER
  • YEAR
  • ISOYEAR: Returns the ISO 8601 week-numbering year, which is the Gregorian calendar year containing the Thursday of the week to which date_expression belongs.
  • DATE
  • TIME

Returned values truncate lower order time periods. For example, when extracting seconds, EXTRACT truncates the millisecond and microsecond values.

Return Data Type

INT64, except in the following cases:

  • If part is DATE, returns a DATE object.
  • If part is TIME, returns a TIME object.

Examples

In the following example, EXTRACT returns a value corresponding to the HOUR time part.

SELECT EXTRACT(HOUR FROM DATETIME(2008, 12, 25, 15, 30, 00)) as hour;

+------------------+
| hour             |
+------------------+
| 15               |
+------------------+

In the following example, EXTRACT returns values corresponding to different time parts from a column of datetimes.

WITH Datetimes AS (
  SELECT DATETIME '2005-01-03 12:34:56' AS datetime UNION ALL
  SELECT DATETIME '2007-12-31' UNION ALL
  SELECT DATETIME '2009-01-01' UNION ALL
  SELECT DATETIME '2009-12-31' UNION ALL
  SELECT DATETIME '2017-01-02' UNION ALL
  SELECT DATETIME '2017-05-26'
)
SELECT
  datetime,
  EXTRACT(ISOYEAR FROM datetime) AS isoyear,
  EXTRACT(ISOWEEK FROM datetime) AS isoweek,
  EXTRACT(YEAR FROM datetime) AS year,
  EXTRACT(WEEK FROM datetime) AS week
FROM Datetimes
ORDER BY datetime;

+---------------------+---------+---------+------+------+
| datetime            | isoyear | isoweek | year | week |
+---------------------+---------+---------+------+------+
| 2005-01-03T12:34:56 | 2005    | 1       | 2005 | 1    |
| 2007-12-31T00:00:00 | 2008    | 1       | 2007 | 52   |
| 2009-01-01T00:00:00 | 2009    | 1       | 2009 | 0    |
| 2009-12-31T00:00:00 | 2009    | 53      | 2009 | 52   |
| 2017-01-02T00:00:00 | 2017    | 1       | 2017 | 1    |
| 2017-05-26T00:00:00 | 2017    | 21      | 2017 | 21   |
+---------------------+---------+---------+------+------+

In the following example, datetime_expression falls on a Sunday. EXTRACT calculates the first column using weeks that begin on Sunday, and it calculates the second column using weeks that begin on Monday.

WITH table AS (SELECT DATETIME(TIMESTAMP "2017-11-05 00:00:00+00", "UTC") AS datetime)
SELECT
  datetime,
  EXTRACT(WEEK(SUNDAY) FROM datetime) AS week_sunday,
  EXTRACT(WEEK(MONDAY) FROM datetime) AS week_monday
FROM table;

+---------------------+-------------+---------------+
| datetime            | week_sunday | week_monday   |
+---------------------+-------------+---------------+
| 2017-11-05T00:00:00 | 45          | 44            |
+---------------------+-------------+---------------+

DATETIME_ADD

DATETIME_ADD(datetime_expression, INTERVAL int64_expression part)

Description

Adds int64_expression units of part to the DATETIME object.

DATETIME_ADD supports the following values for part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR
  • DAY
  • WEEK. Equivalent to 7 DAYs.
  • MONTH
  • QUARTER
  • YEAR

Special handling is required for MONTH, QUARTER, and YEAR parts when the date is at (or near) the last day of the month. If the resulting month has fewer days than the original DATETIME's day, then the result day is the last day of the new month.

Return Data Type

DATETIME

Example

SELECT
  DATETIME "2008-12-25 15:30:00" as original_date,
  DATETIME_ADD(DATETIME "2008-12-25 15:30:00", INTERVAL 10 MINUTE) as later;

+-----------------------------+------------------------+
| original_date               | later                  |
+-----------------------------+------------------------+
| 2008-12-25T15:30:00         | 2008-12-25T15:40:00    |
+-----------------------------+------------------------+

DATETIME_SUB

DATETIME_SUB(datetime_expression, INTERVAL int64_expression part)

Description

Subtracts int64_expression units of part from the DATETIME.

DATETIME_SUB supports the following values for part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR
  • DAY
  • WEEK. Equivalent to 7 DAYs.
  • MONTH
  • QUARTER
  • YEAR

Special handling is required for MONTH, QUARTER, and YEAR parts when the date is at (or near) the last day of the month. If the resulting month has fewer days than the original DATETIME's day, then the result day is the last day of the new month.

Return Data Type

DATETIME

Example

SELECT
  DATETIME "2008-12-25 15:30:00" as original_date,
  DATETIME_SUB(DATETIME "2008-12-25 15:30:00", INTERVAL 10 MINUTE) as earlier;

+-----------------------------+------------------------+
| original_date               | earlier                |
+-----------------------------+------------------------+
| 2008-12-25T15:30:00         | 2008-12-25T15:20:00    |
+-----------------------------+------------------------+

DATETIME_DIFF

DATETIME_DIFF(datetime_expression_a, datetime_expression_b, part)

Description

Returns the whole number of specified part intervals between two DATETIME objects (datetime_expression_a - datetime_expression_b). If the first DATETIME is earlier than the second one, the output is negative. Throws an error if the computation overflows the result type, such as if the difference in microseconds between the two DATETIME objects would overflow an INT64 value.

DATETIME_DIFF supports the following values for part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR
  • DAY
  • WEEK: This date part begins on Sunday.
  • WEEK(<WEEKDAY>): This date part begins on WEEKDAY. Valid values for WEEKDAY are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK: Uses ISO 8601 week boundaries. ISO weeks begin on Monday.
  • MONTH, except when the first two arguments are TIMESTAMP objects.
  • QUARTER
  • YEAR
  • ISOYEAR: Uses the ISO 8601 week-numbering year boundary. The ISO year boundary is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

Return Data Type

INT64

Example

SELECT
  DATETIME "2010-07-07 10:20:00" as first_datetime,
  DATETIME "2008-12-25 15:30:00" as second_datetime,
  DATETIME_DIFF(DATETIME "2010-07-07 10:20:00",
    DATETIME "2008-12-25 15:30:00", DAY) as difference;

+----------------------------+------------------------+------------------------+
| first_datetime             | second_datetime        | difference             |
+----------------------------+------------------------+------------------------+
| 2010-07-07T10:20:00        | 2008-12-25T15:30:00    | 559                    |
+----------------------------+------------------------+------------------------+
SELECT
  DATETIME_DIFF(DATETIME '2017-10-15 00:00:00',
    DATETIME '2017-10-14 00:00:00', DAY) as days_diff,
  DATETIME_DIFF(DATETIME '2017-10-15 00:00:00',
    DATETIME '2017-10-14 00:00:00', WEEK) as weeks_diff;

+-----------+------------+
| days_diff | weeks_diff |
+-----------+------------+
| 1         | 1          |
+-----------+------------+

The example above shows the result of DATETIME_DIFF for two DATETIMEs that are 24 hours apart. DATETIME_DIFF with the part WEEK returns 1 because DATETIME_DIFF counts the number of part boundaries in this range of DATETIMEs. Each WEEK begins on Sunday, so there is one part boundary between Saturday, 2017-10-14 00:00:00 and Sunday, 2017-10-15 00:00:00.

The following example shows the result of DATETIME_DIFF for two dates in different years. DATETIME_DIFF with the date part YEAR returns 3 because it counts the number of Gregorian calendar year boundaries between the two DATETIMEs. DATETIME_DIFF with the date part ISOYEAR returns 2 because the second DATETIME belongs to the ISO year 2015. The first Thursday of the 2015 calendar year was 2015-01-01, so the ISO year 2015 begins on the preceding Monday, 2014-12-29.

SELECT
  DATETIME_DIFF('2017-12-30 00:00:00',
    '2014-12-30 00:00:00', YEAR) AS year_diff,
  DATETIME_DIFF('2017-12-30 00:00:00',
    '2014-12-30 00:00:00', ISOYEAR) AS isoyear_diff;

+-----------+--------------+
| year_diff | isoyear_diff |
+-----------+--------------+
| 3         | 2            |
+-----------+--------------+

The following example shows the result of DATETIME_DIFF for two days in succession. The first date falls on a Monday and the second date falls on a Sunday. DATETIME_DIFF with the date part WEEK returns 0 because this time part uses weeks that begin on Sunday. DATETIME_DIFF with the date part WEEK(MONDAY) returns 1. DATETIME_DIFF with the date part ISOWEEK also returns 1 because ISO weeks begin on Monday.

SELECT
  DATETIME_DIFF('2017-12-18', '2017-12-17', WEEK) AS week_diff,
  DATETIME_DIFF('2017-12-18', '2017-12-17', WEEK(MONDAY)) AS week_weekday_diff,
  DATETIME_DIFF('2017-12-18', '2017-12-17', ISOWEEK) AS isoweek_diff;

+-----------+-------------------+--------------+
| week_diff | week_weekday_diff | isoweek_diff |
+-----------+-------------------+--------------+
| 0         | 1                 | 1            |
+-----------+-------------------+--------------+

DATETIME_TRUNC

DATETIME_TRUNC(datetime_expression, date_time_part)

Description

Truncates a DATETIME value to the granularity of date_time_part. The DATETIME value is always rounded to the beginning of date_time_part, which can be one of the following:

  • MICROSECOND: If used, nothing is truncated from the value.
  • MILLISECOND: The nearest lessor or equal millisecond.
  • SECOND: The nearest lessor or equal second.
  • MINUTE: The nearest lessor or equal minute.
  • HOUR: The nearest lessor or equal hour.
  • DAY: The day in the Gregorian calendar year that contains the DATETIME value.
  • WEEK: The first day of the week in the week that contains the DATETIME value. Weeks begin on Sundays. WEEK is equivalent to WEEK(SUNDAY).
  • WEEK(WEEKDAY): The first day of the week in the week that contains the DATETIME value. Weeks begin on WEEKDAY. WEEKDAY must be one of the following: SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, or SATURDAY.
  • ISOWEEK: The first day of the ISO 8601 week in the ISO week that contains the DATETIME value. The ISO week begins on Monday. The first ISO week of each ISO year contains the first Thursday of the corresponding Gregorian calendar year.
  • MONTH: The first day of the month in the month that contains the DATETIME value.
  • QUARTER: The first day of the quarter in the quarter that contains the DATETIME value.
  • YEAR: The first day of the year in the year that contains the DATETIME value.
  • ISOYEAR: The first day of the ISO 8601 week-numbering year in the ISO year that contains the DATETIME value. The ISO year is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

Return Data Type

DATETIME

Examples

SELECT
  DATETIME "2008-12-25 15:30:00" as original,
  DATETIME_TRUNC(DATETIME "2008-12-25 15:30:00", DAY) as truncated;

+----------------------------+------------------------+
| original                   | truncated              |
+----------------------------+------------------------+
| 2008-12-25T15:30:00        | 2008-12-25T00:00:00    |
+----------------------------+------------------------+

In the following example, the original DATETIME falls on a Sunday. Because the part is WEEK(MONDAY), DATE_TRUNC returns the DATETIME for the preceding Monday.

SELECT
 datetime AS original,
 DATETIME_TRUNC(datetime, WEEK(MONDAY)) AS truncated
FROM (SELECT DATETIME(TIMESTAMP "2017-11-05 00:00:00+00", "UTC") AS datetime);

+---------------------+---------------------+
| original            | truncated           |
+---------------------+---------------------+
| 2017-11-05T00:00:00 | 2017-10-30T00:00:00 |
+---------------------+---------------------+

In the following example, the original datetime_expression is in the Gregorian calendar year 2015. However, DATETIME_TRUNC with the ISOYEAR date part truncates the datetime_expression to the beginning of the ISO year, not the Gregorian calendar year. The first Thursday of the 2015 calendar year was 2015-01-01, so the ISO year 2015 begins on the preceding Monday, 2014-12-29. Therefore the ISO year boundary preceding the datetime_expression 2015-06-15 00:00:00 is 2014-12-29.

SELECT
  DATETIME_TRUNC('2015-06-15 00:00:00', ISOYEAR) AS isoyear_boundary,
  EXTRACT(ISOYEAR FROM DATETIME '2015-06-15 00:00:00') AS isoyear_number;

+---------------------+----------------+
| isoyear_boundary    | isoyear_number |
+---------------------+----------------+
| 2014-12-29T00:00:00 | 2015           |
+---------------------+----------------+

FORMAT_DATETIME

FORMAT_DATETIME(format_string, datetime_expression)

Description

Formats a DATETIME object according to the specified format_string. See Supported Format Elements For DATETIME for a list of format elements that this function supports.

Return Data Type

STRING

Examples

SELECT
  FORMAT_DATETIME("%c", DATETIME "2008-12-25 15:30:00")
  AS formatted;

+--------------------------+
| formatted                |
+--------------------------+
| Thu Dec 25 15:30:00 2008 |
+--------------------------+
SELECT
  FORMAT_DATETIME("%b-%d-%Y", DATETIME "2008-12-25 15:30:00")
  AS formatted;

+-------------+
| formatted   |
+-------------+
| Dec-25-2008 |
+-------------+
SELECT
  FORMAT_DATETIME("%b %Y", DATETIME "2008-12-25 15:30:00")
  AS formatted;

+-------------+
| formatted   |
+-------------+
| Dec 2008    |
+-------------+

LAST_DAY

LAST_DAY(datetime_expression[, date_part])

Description

Returns the last day from a datetime expression that contains the date. This is commonly used to return the last day of the month.

You can optionally specify the date part for which the last day is returned. If this parameter is not used, the default value is MONTH. LAST_DAY supports the following values for date_part:

  • YEAR
  • QUARTER
  • MONTH
  • WEEK. Equivalent to 7 DAYs.
  • WEEK(<WEEKDAY>). <WEEKDAY> represents the starting day of the week. Valid values are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK. Uses ISO 8601 week boundaries. ISO weeks begin on Monday.
  • ISOYEAR. Uses the ISO 8601 week-numbering year boundary. The ISO year boundary is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

Return Data Type

DATE

Example

These both return the last day of the month:

SELECT LAST_DAY(DATETIME '2008-11-25', MONTH) AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-30 |
+------------+
SELECT LAST_DAY(DATETIME '2008-11-25') AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-30 |
+------------+

This returns the last day of the year:

SELECT LAST_DAY(DATETIME '2008-11-25 15:30:00', YEAR) AS last_day

+------------+
| last_day   |
+------------+
| 2008-12-31 |
+------------+

This returns the last day of the week for a week that starts on a Sunday:

SELECT LAST_DAY(DATETIME '2008-11-10 15:30:00', WEEK(SUNDAY)) AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-15 |
+------------+

This returns the last day of the week for a week that starts on a Monday:

SELECT LAST_DAY(DATETIME '2008-11-10 15:30:00', WEEK(MONDAY)) AS last_day

+------------+
| last_day   |
+------------+
| 2008-11-16 |
+------------+

PARSE_DATETIME

PARSE_DATETIME(format_string, datetime_string)

Description

Converts a string representation of a datetime to a DATETIME object.

format_string contains the format elements that define how datetime_string is formatted. Each element in datetime_string must have a corresponding element in format_string. The location of each element in format_string must match the location of each element in datetime_string.

-- This works because elements on both sides match.
SELECT PARSE_DATETIME("%a %b %e %I:%M:%S %Y", "Thu Dec 25 07:30:00 2008")

-- This doesn't work because the year element is in different locations.
SELECT PARSE_DATETIME("%a %b %e %Y %I:%M:%S", "Thu Dec 25 07:30:00 2008")

-- This doesn't work because one of the year elements is missing.
SELECT PARSE_DATETIME("%a %b %e %I:%M:%S", "Thu Dec 25 07:30:00 2008")

-- This works because %c can find all matching elements in datetime_string.
SELECT PARSE_DATETIME("%c", "Thu Dec 25 07:30:00 2008")

The format string fully supports most format elements, except for %P.

PARSE_DATETIME parses string according to the following rules:

  • Unspecified fields. Any unspecified field is initialized from 1970-01-01 00:00:00.0. For example, if the year is unspecified then it defaults to 1970.
  • Case insensitivity. Names, such as Monday and February, are case insensitive.
  • Whitespace. One or more consecutive white spaces in the format string matches zero or more consecutive white spaces in the DATETIME string. Leading and trailing white spaces in the DATETIME string are always allowed, even if they are not in the format string.
  • Format precedence. When two or more format elements have overlapping information, the last one generally overrides any earlier ones, with some exceptions. For example, both %F and %Y affect the year, so the earlier element overrides the later. See the descriptions of %s, %C, and %y in Supported Format Elements For DATETIME.
  • Format divergence. %p can be used with am, AM, pm, and PM.

Return Data Type

DATETIME

Examples

The following examples parse a STRING literal as a DATETIME.

SELECT PARSE_DATETIME('%Y-%m-%d %H:%M:%S', '1998-10-18 13:45:55') AS datetime;

+---------------------+
| datetime            |
+---------------------+
| 1998-10-18T13:45:55 |
+---------------------+
SELECT PARSE_DATETIME('%m/%d/%Y %I:%M:%S %p', '8/30/2018 2:23:38 pm') AS datetime

+---------------------+
| datetime            |
+---------------------+
| 2018-08-30T14:23:38 |
+---------------------+

The following example parses a STRING literal containing a date in a natural language format as a DATETIME.

SELECT PARSE_DATETIME('%A, %B %e, %Y','Wednesday, December 19, 2018')
  AS datetime;

+---------------------+
| datetime            |
+---------------------+
| 2018-12-19T00:00:00 |
+---------------------+

Time functions

BigQuery supports the following TIME functions.

CURRENT_TIME

CURRENT_TIME([time_zone])

Description

Returns the current time as a TIME object. Parentheses are optional when called with no arguments.

This function supports an optional time_zone parameter. See Time zone definitions for information on how to specify a time zone.

Return Data Type

TIME

Example

SELECT CURRENT_TIME() as now;

+----------------------------+
| now                        |
+----------------------------+
| 15:31:38.776361            |
+----------------------------+

When a column named current_time is present, the column name and the function call without parentheses are ambiguous. To ensure the function call, add parentheses; to ensure the column name, qualify it with its range variable. For example, the following query will select the function in the now column and the table column in the current_time column.

WITH t AS (SELECT 'column value' AS `current_time`)
SELECT current_time() as now, t.current_time FROM t;

+-----------------+--------------+
| now             | current_time |
+-----------------+--------------+
| 15:31:38.776361 | column value |
+-----------------+--------------+

TIME

1. TIME(hour, minute, second)
2. TIME(timestamp, [time_zone])
3. TIME(datetime)

Description

  1. Constructs a TIME object using INT64 values representing the hour, minute, and second.
  2. Constructs a TIME object using a TIMESTAMP object. It supports an optional parameter to specify a time zone. If no time zone is specified, the default time zone, UTC, is used.
  3. Constructs a TIME object using a DATETIME object.

Return Data Type

TIME

Example

SELECT
  TIME(15, 30, 00) as time_hms,
  TIME(TIMESTAMP "2008-12-25 15:30:00+08", "America/Los_Angeles") as time_tstz;

+----------+-----------+
| time_hms | time_tstz |
+----------+-----------+
| 15:30:00 | 23:30:00  |
+----------+-----------+
SELECT TIME(DATETIME "2008-12-25 15:30:00.000000") AS time_dt;

+----------+
| time_dt  |
+----------+
| 15:30:00 |
+----------+
EXTRACT(part FROM time_expression)

Description

Returns a value that corresponds to the specified part from a supplied time_expression.

Allowed part values are:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR

Returned values truncate lower order time periods. For example, when extracting seconds, EXTRACT truncates the millisecond and microsecond values.

Return Data Type

INT64

Example

In the following example, EXTRACT returns a value corresponding to the HOUR time part.

SELECT EXTRACT(HOUR FROM TIME "15:30:00") as hour;

+------------------+
| hour             |
+------------------+
| 15               |
+------------------+

TIME_ADD

TIME_ADD(time_expression, INTERVAL int64_expression part)

Description

Adds int64_expression units of part to the TIME object.

TIME_ADD supports the following values for part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR

This function automatically adjusts when values fall outside of the 00:00:00 to 24:00:00 boundary. For example, if you add an hour to 23:30:00, the returned value is 00:30:00.

Return Data Types

TIME

Example

SELECT
  TIME "15:30:00" as original_time,
  TIME_ADD(TIME "15:30:00", INTERVAL 10 MINUTE) as later;

+-----------------------------+------------------------+
| original_time               | later                  |
+-----------------------------+------------------------+
| 15:30:00                    | 15:40:00               |
+-----------------------------+------------------------+

TIME_SUB

TIME_SUB(time_expression, INTERVAL int64_expression part)

Description

Subtracts int64_expression units of part from the TIME object.

TIME_SUB supports the following values for part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR

This function automatically adjusts when values fall outside of the 00:00:00 to 24:00:00 boundary. For example, if you subtract an hour from 00:30:00, the returned value is 23:30:00.

Return Data Type

TIME

Example

SELECT
  TIME "15:30:00" as original_date,
  TIME_SUB(TIME "15:30:00", INTERVAL 10 MINUTE) as earlier;

+-----------------------------+------------------------+
| original_date                | earlier                |
+-----------------------------+------------------------+
| 15:30:00                    | 15:20:00               |
+-----------------------------+------------------------+

TIME_DIFF

TIME_DIFF(time_expression_a, time_expression_b, part)

Description

Returns the whole number of specified part intervals between two TIME objects (time_expression_a - time_expression_b). If the first TIME is earlier than the second one, the output is negative. Throws an error if the computation overflows the result type, such as if the difference in microseconds between the two TIME objects would overflow an INT64 value.

TIME_DIFF supports the following values for part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR

Return Data Type

INT64

Example

SELECT
  TIME "15:30:00" as first_time,
  TIME "14:35:00" as second_time,
  TIME_DIFF(TIME "15:30:00", TIME "14:35:00", MINUTE) as difference;

+----------------------------+------------------------+------------------------+
| first_time                 | second_time            | difference             |
+----------------------------+------------------------+------------------------+
| 15:30:00                   | 14:35:00               | 55                     |
+----------------------------+------------------------+------------------------+

TIME_TRUNC

TIME_TRUNC(time_expression, time_part)

Description

Truncates a TIME value to the granularity of time_part. The TIME value is always rounded to the beginning of time_part, which can be one of the following:

  • MICROSECOND: If used, nothing is truncated from the value.
  • MILLISECOND: The nearest lessor or equal millisecond.
  • SECOND: The nearest lessor or equal second.
  • MINUTE: The nearest lessor or equal minute.
  • HOUR: The nearest lessor or equal hour.

Return Data Type

TIME

Example

SELECT
  TIME "15:30:00" as original,
  TIME_TRUNC(TIME "15:30:00", HOUR) as truncated;

+----------------------------+------------------------+
| original                   | truncated              |
+----------------------------+------------------------+
| 15:30:00                   | 15:00:00               |
+----------------------------+------------------------+

FORMAT_TIME

FORMAT_TIME(format_string, time_object)

Description Formats a TIME object according to the specified format_string. See Supported Format Elements For TIME for a list of format elements that this function supports.

Return Data Type

STRING

Example

SELECT FORMAT_TIME("%R", TIME "15:30:00") as formatted_time;

+----------------+
| formatted_time |
+----------------+
| 15:30          |
+----------------+

PARSE_TIME

PARSE_TIME(format_string, time_string)

Description

Converts a string representation of time to a TIME object.

format_string contains the format elements that define how time_string is formatted. Each element in time_string must have a corresponding element in format_string. The location of each element in format_string must match the location of each element in time_string.

-- This works because elements on both sides match.
SELECT PARSE_TIME("%I:%M:%S", "07:30:00")

-- This doesn't work because the seconds element is in different locations.
SELECT PARSE_TIME("%S:%I:%M", "07:30:00")

-- This doesn't work because one of the seconds elements is missing.
SELECT PARSE_TIME("%I:%M", "07:30:00")

-- This works because %T can find all matching elements in time_string.
SELECT PARSE_TIME("%T", "07:30:00")

The format string fully supports most format elements except for %P.

When using PARSE_TIME, keep the following in mind:

  • Unspecified fields. Any unspecified field is initialized from 00:00:00.0. For instance, if seconds is unspecified then it defaults to 00, and so on.
  • Whitespace. One or more consecutive white spaces in the format string matches zero or more consecutive white spaces in the TIME string. In addition, leading and trailing white spaces in the TIME string are always allowed, even if they are not in the format string.
  • Format precedence. When two (or more) format elements have overlapping information, the last one generally overrides any earlier ones.
  • Format divergence. %p can be used with am, AM, pm, and PM.

Return Data Type

TIME

Example

SELECT PARSE_TIME("%H", "15") as parsed_time;

+-------------+
| parsed_time |
+-------------+
| 15:00:00    |
+-------------+
SELECT PARSE_TIME('%I:%M:%S %p', '2:23:38 pm') AS parsed_time

+-------------+
| parsed_time |
+-------------+
| 14:23:38    |
+-------------+

Timestamp functions

BigQuery supports several TIMESTAMP functions.

IMPORTANT: Before working with these functions, you need to understand the difference between the formats in which timestamps are stored and displayed, and how time zones are used for the conversion between these formats. To learn more, see How time zones work with timestamp functions.

NOTE: These functions return a runtime error if overflow occurs; result values are bounded by the defined date and timestamp min/max values.

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP()

Description

CURRENT_TIMESTAMP() produces a TIMESTAMP value that is continuous, non-ambiguous, has exactly 60 seconds per minute and does not repeat values over the leap second. Parentheses are optional.

This function handles leap seconds by smearing them across a window of 20 hours around the inserted leap second.

Supported Input Types

Not applicable

Result Data Type

TIMESTAMP

Examples

SELECT CURRENT_TIMESTAMP() AS now;

+--------------------------------+
| now                            |
+--------------------------------+
| 2020-06-02 23:57:12.120174 UTC |
+--------------------------------+

When a column named current_timestamp is present, the column name and the function call without parentheses are ambiguous. To ensure the function call, add parentheses; to ensure the column name, qualify it with its range variable. For example, the following query will select the function in the now column and the table column in the current_timestamp column.

WITH t AS (SELECT 'column value' AS `current_timestamp`)
SELECT current_timestamp() AS now, t.current_timestamp FROM t;

+--------------------------------+-------------------+
| now                            | current_timestamp |
+--------------------------------+-------------------+
| 2020-06-02 23:57:12.120174 UTC | column value      |
+--------------------------------+-------------------+
EXTRACT(part FROM timestamp_expression [AT TIME ZONE time_zone])

Description

Returns a value that corresponds to the specified part from a supplied timestamp_expression. This function supports an optional time_zone parameter. See Time zone definitions for information on how to specify a time zone.

Allowed part values are:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR
  • DAYOFWEEK: Returns values in the range [1,7] with Sunday as the first day of of the week.
  • DAY
  • DAYOFYEAR
  • WEEK: Returns the week number of the date in the range [0, 53]. Weeks begin with Sunday, and dates prior to the first Sunday of the year are in week 0.
  • WEEK(<WEEKDAY>): Returns the week number of timestamp_expression in the range [0, 53]. Weeks begin on WEEKDAY. datetimes prior to the first WEEKDAY of the year are in week 0. Valid values for WEEKDAY are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY.
  • ISOWEEK: Returns the ISO 8601 week number of the datetime_expression. ISOWEEKs begin on Monday. Return values are in the range [1, 53]. The first ISOWEEK of each ISO year begins on the Monday before the first Thursday of the Gregorian calendar year.
  • MONTH
  • QUARTER
  • YEAR
  • ISOYEAR: Returns the ISO 8601 week-numbering year, which is the Gregorian calendar year containing the Thursday of the week to which date_expression belongs.
  • DATE
  • DATETIME
  • TIME

Returned values truncate lower order time periods. For example, when extracting seconds, EXTRACT truncates the millisecond and microsecond values.

Return Data Type

INT64, except when:

  • part is DATE, returns a DATE object.
  • part is DATETIME, returns a DATETIME object.
  • part is TIME, returns a TIME object.

Examples

In the following example, EXTRACT returns a value corresponding to the DAY time part.

WITH Input AS (SELECT TIMESTAMP("2008-12-25 05:30:00+00") AS timestamp_value)
SELECT
  EXTRACT(DAY FROM timestamp_value AT TIME ZONE "UTC") AS the_day_utc,
  EXTRACT(DAY FROM timestamp_value AT TIME ZONE "America/Los_Angeles") AS the_day_california
FROM Input

+-------------+--------------------+
| the_day_utc | the_day_california |
+-------------+--------------------+
| 25          | 24                 |
+-------------+--------------------+

In the following example, EXTRACT returns values corresponding to different time parts from a column of timestamps.

WITH Timestamps AS (
  SELECT TIMESTAMP("2005-01-03 12:34:56+00") AS timestamp_value UNION ALL
  SELECT TIMESTAMP("2007-12-31 12:00:00+00") UNION ALL
  SELECT TIMESTAMP("2009-01-01 12:00:00+00") UNION ALL
  SELECT TIMESTAMP("2009-12-31 12:00:00+00") UNION ALL
  SELECT TIMESTAMP("2017-01-02 12:00:00+00") UNION ALL
  SELECT TIMESTAMP("2017-05-26 12:00:00+00")
)
SELECT
  timestamp_value,
  EXTRACT(ISOYEAR FROM timestamp_value) AS isoyear,
  EXTRACT(ISOWEEK FROM timestamp_value) AS isoweek,
  EXTRACT(YEAR FROM timestamp_value) AS year,
  EXTRACT(WEEK FROM timestamp_value) AS week
FROM Timestamps
ORDER BY timestamp_value;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+---------+---------+------+------+
| timestamp_value         | isoyear | isoweek | year | week |
+-------------------------+---------+---------+------+------+
| 2005-01-03 12:34:56 UTC | 2005    | 1       | 2005 | 1    |
| 2007-12-31 12:00:00 UTC | 2008    | 1       | 2007 | 52   |
| 2009-01-01 12:00:00 UTC | 2009    | 1       | 2009 | 0    |
| 2009-12-31 12:00:00 UTC | 2009    | 53      | 2009 | 52   |
| 2017-01-02 12:00:00 UTC | 2017    | 1       | 2017 | 1    |
| 2017-05-26 12:00:00 UTC | 2017    | 21      | 2017 | 21   |
+-------------------------+---------+---------+------+------+

In the following example, timestamp_expression falls on a Monday. EXTRACT calculates the first column using weeks that begin on Sunday, and it calculates the second column using weeks that begin on Monday.

WITH table AS (SELECT TIMESTAMP("2017-11-05 00:00:00+00") AS timestamp_value)
SELECT
  timestamp_value,
  EXTRACT(WEEK(SUNDAY) FROM timestamp_value) AS week_sunday,
  EXTRACT(WEEK(MONDAY) FROM timestamp_value) AS week_monday
FROM table;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+-------------+---------------+
| timestamp_value         | week_sunday | week_monday   |
+-------------------------+-------------+---------------+
| 2017-11-05 00:00:00 UTC | 45          | 44            |
+-------------------------+-------------+---------------+

STRING

STRING(timestamp_expression[, time_zone])

Description

Converts a timestamp_expression to a STRING data type. Supports an optional parameter to specify a time zone. See Time zone definitions for information on how to specify a time zone.

Return Data Type

STRING

Example

SELECT STRING(TIMESTAMP "2008-12-25 15:30:00+00", "UTC") AS string;

+-------------------------------+
| string                        |
+-------------------------------+
| 2008-12-25 15:30:00+00        |
+-------------------------------+

TIMESTAMP

TIMESTAMP(string_expression[, time_zone])
TIMESTAMP(date_expression[, time_zone])
TIMESTAMP(datetime_expression[, time_zone])

Description

  • string_expression[, time_zone]: Converts a STRING expression to a TIMESTAMP data type. string_expression must include a timestamp literal. If string_expression includes a time_zone in the timestamp literal, do not include an explicit time_zone argument.
  • date_expression[, time_zone]: Converts a DATE object to a TIMESTAMP data type.
  • datetime_expression[, time_zone]: Converts a DATETIME object to a TIMESTAMP data type.

This function supports an optional parameter to specify a time zone. If no time zone is specified, the default time zone, UTC, is used.

Return Data Type

TIMESTAMP

Examples

SELECT TIMESTAMP("2008-12-25 15:30:00+00") AS timestamp_str;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_str           |
+-------------------------+
| 2008-12-25 15:30:00 UTC |
+-------------------------+
SELECT TIMESTAMP("2008-12-25 15:30:00", "America/Los_Angeles") AS timestamp_str;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_str           |
+-------------------------+
| 2008-12-25 23:30:00 UTC |
+-------------------------+
SELECT TIMESTAMP("2008-12-25 15:30:00 UTC") AS timestamp_str;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_str           |
+-------------------------+
| 2008-12-25 15:30:00 UTC |
+-------------------------+
SELECT TIMESTAMP(DATETIME "2008-12-25 15:30:00") AS timestamp_datetime;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_datetime      |
+-------------------------+
| 2008-12-25 15:30:00 UTC |
+-------------------------+
SELECT TIMESTAMP(DATE "2008-12-25") AS timestamp_date;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_date          |
+-------------------------+
| 2008-12-25 00:00:00 UTC |
+-------------------------+

TIMESTAMP_ADD

TIMESTAMP_ADD(timestamp_expression, INTERVAL int64_expression date_part)

Description

Adds int64_expression units of date_part to the timestamp, independent of any time zone.

TIMESTAMP_ADD supports the following values for date_part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR. Equivalent to 60 MINUTEs.
  • DAY. Equivalent to 24 HOURs.

Return Data Types

TIMESTAMP

Example

SELECT
  TIMESTAMP("2008-12-25 15:30:00+00") AS original,
  TIMESTAMP_ADD(TIMESTAMP "2008-12-25 15:30:00+00", INTERVAL 10 MINUTE) AS later;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+-------------------------+
| original                | later                   |
+-------------------------+-------------------------+
| 2008-12-25 15:30:00 UTC | 2008-12-25 15:40:00 UTC |
+-------------------------+-------------------------+

TIMESTAMP_SUB

TIMESTAMP_SUB(timestamp_expression, INTERVAL int64_expression date_part)

Description

Subtracts int64_expression units of date_part from the timestamp, independent of any time zone.

TIMESTAMP_SUB supports the following values for date_part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR. Equivalent to 60 MINUTEs.
  • DAY. Equivalent to 24 HOURs.

Return Data Type

TIMESTAMP

Example

SELECT
  TIMESTAMP("2008-12-25 15:30:00+00") AS original,
  TIMESTAMP_SUB(TIMESTAMP "2008-12-25 15:30:00+00", INTERVAL 10 MINUTE) AS earlier;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+-------------------------+
| original                | earlier                 |
+-------------------------+-------------------------+
| 2008-12-25 15:30:00 UTC | 2008-12-25 15:20:00 UTC |
+-------------------------+-------------------------+

TIMESTAMP_DIFF

TIMESTAMP_DIFF(timestamp_expression_a, timestamp_expression_b, date_part)

Description

Returns the whole number of specified date_part intervals between two TIMESTAMP objects (timestamp_expression_a - timestamp_expression_b). If the first TIMESTAMP is earlier than the second one, the output is negative. Throws an error if the computation overflows the result type, such as if the difference in microseconds between the two TIMESTAMP objects would overflow an INT64 value.

TIMESTAMP_DIFF supports the following values for date_part:

  • MICROSECOND
  • MILLISECOND
  • SECOND
  • MINUTE
  • HOUR. Equivalent to 60 MINUTEs.
  • DAY. Equivalent to 24 HOURs.

Return Data Type

INT64

Example

SELECT
  TIMESTAMP("2010-07-07 10:20:00+00") AS later_timestamp,
  TIMESTAMP("2008-12-25 15:30:00+00") AS earlier_timestamp,
  TIMESTAMP_DIFF(TIMESTAMP "2010-07-07 10:20:00+00", TIMESTAMP "2008-12-25 15:30:00+00", HOUR) AS hours;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+-------------------------+-------+
| later_timestamp         | earlier_timestamp       | hours |
+-------------------------+-------------------------+-------+
| 2010-07-07 10:20:00 UTC | 2008-12-25 15:30:00 UTC | 13410 |
+-------------------------+-------------------------+-------+

In the following example, the first timestamp occurs before the second timestamp, resulting in a negative output.

SELECT TIMESTAMP_DIFF(TIMESTAMP "2018-08-14", TIMESTAMP "2018-10-14", DAY);

+---------------+
| negative_diff |
+---------------+
| -61           |
+---------------+

In this example, the result is 0 because only the number of whole specified HOUR intervals are included.

SELECT TIMESTAMP_DIFF("2001-02-01 01:00:00", "2001-02-01 00:00:01", HOUR)

+---------------+
| negative_diff |
+---------------+
| 0             |
+---------------+

TIMESTAMP_TRUNC

TIMESTAMP_TRUNC(timestamp_expression, date_time_part[, time_zone])

Description

Truncates a TIMESTAMP value to the granularity of date_time_part. The TIMESTAMP value is always rounded to the beginning of date_time_part, which can be one of the following:

  • MICROSECOND: If used, nothing is truncated from the value.
  • MILLISECOND: The nearest lessor or equal millisecond.
  • SECOND: The nearest lessor or equal second.
  • MINUTE: The nearest lessor or equal minute.
  • HOUR: The nearest lessor or equal hour.
  • DAY: The day in the Gregorian calendar year that contains the TIMESTAMP value.
  • WEEK: The first day of the week in the week that contains the TIMESTAMP value. Weeks begin on Sundays. WEEK is equivalent to WEEK(SUNDAY).
  • WEEK(WEEKDAY): The first day of the week in the week that contains the TIMESTAMP value. Weeks begin on WEEKDAY. WEEKDAY must be one of the following: SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, or SATURDAY.
  • ISOWEEK: The first day of the ISO 8601 week in the ISO week that contains the TIMESTAMP value. The ISO week begins on Monday. The first ISO week of each ISO year contains the first Thursday of the corresponding Gregorian calendar year.
  • MONTH: The first day of the month in the month that contains the TIMESTAMP value.
  • QUARTER: The first day of the quarter in the quarter that contains the TIMESTAMP value.
  • YEAR: The first day of the year in the year that contains the TIMESTAMP value.
  • ISOYEAR: The first day of the ISO 8601 week-numbering year in the ISO year that contains the TIMESTAMP value. The ISO year is the Monday of the first week whose Thursday belongs to the corresponding Gregorian calendar year.

TIMESTAMP_TRUNC function supports an optional time_zone parameter. This parameter applies to the following date_time_part:

  • MINUTE
  • HOUR
  • DAY
  • WEEK
  • WEEK(<WEEKDAY>)
  • ISOWEEK
  • MONTH
  • QUARTER
  • YEAR
  • ISOYEAR

Use this parameter if you want to use a time zone other than the default time zone, UTC, as part of the truncate operation.

When truncating a TIMESTAMP to MINUTE orHOUR, TIMESTAMP_TRUNC determines the civil time of the TIMESTAMP in the specified (or default) time zone and subtracts the minutes and seconds (when truncating to HOUR) or the seconds (when truncating to MINUTE) from that TIMESTAMP. While this provides intuitive results in most cases, the result is non-intuitive near daylight savings transitions that are not hour aligned.

Return Data Type

TIMESTAMP

Examples

SELECT
  TIMESTAMP_TRUNC(TIMESTAMP "2008-12-25 15:30:00+00", DAY, "UTC") AS utc,
  TIMESTAMP_TRUNC(TIMESTAMP "2008-12-25 15:30:00+00", DAY, "America/Los_Angeles") AS la;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+-----------------=-------+
| utc                     | la                      |
+-------------------------+-------------------------+
| 2008-12-25 00:00:00 UTC | 2008-12-25 08:00:00 UTC |
+-------------------------+-------------------------+

In the following example, timestamp_expression has a time zone offset of +12. The first column shows the timestamp_expression in UTC time. The second column shows the output of TIMESTAMP_TRUNC using weeks that start on Monday. Because the timestamp_expression falls on a Sunday in UTC, TIMESTAMP_TRUNC truncates it to the preceding Monday. The third column shows the same function with the optional Time zone definition argument 'Pacific/Auckland'. Here the function truncates the timestamp_expression using New Zealand Daylight Time, where it falls on a Monday.

SELECT
  timestamp_value AS timestamp_value,
  TIMESTAMP_TRUNC(timestamp_value, WEEK(MONDAY), "UTC") AS utc_truncated,
  TIMESTAMP_TRUNC(timestamp_value, WEEK(MONDAY), "Pacific/Auckland") AS nzdt_truncated
FROM (SELECT TIMESTAMP("2017-11-06 00:00:00+12") AS timestamp_value);

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+-------------------------+-------------------------+
| timestamp_value         | utc_truncated           | nzdt_truncated          |
+-------------------------+-------------------------+-------------------------+
| 2017-11-05 12:00:00 UTC | 2017-10-30 00:00:00 UTC | 2017-11-05 11:00:00 UTC |
+-------------------------+-------------------------+-------------------------+

In the following example, the original timestamp_expression is in the Gregorian calendar year 2015. However, TIMESTAMP_TRUNC with the ISOYEAR date part truncates the timestamp_expression to the beginning of the ISO year, not the Gregorian calendar year. The first Thursday of the 2015 calendar year was 2015-01-01, so the ISO year 2015 begins on the preceding Monday, 2014-12-29. Therefore the ISO year boundary preceding the timestamp_expression 2015-06-15 00:00:00+00 is 2014-12-29.

SELECT
  TIMESTAMP_TRUNC("2015-06-15 00:00:00+00", ISOYEAR) AS isoyear_boundary,
  EXTRACT(ISOYEAR FROM TIMESTAMP "2015-06-15 00:00:00+00") AS isoyear_number;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+----------------+
| isoyear_boundary        | isoyear_number |
+-------------------------+----------------+
| 2014-12-29 00:00:00 UTC | 2015           |
+-------------------------+----------------+

FORMAT_TIMESTAMP

FORMAT_TIMESTAMP(format_string, timestamp[, time_zone])

Description

Formats a timestamp according to the specified format_string.

See Supported Format Elements For TIMESTAMP for a list of format elements that this function supports.

Return Data Type

STRING

Example

SELECT FORMAT_TIMESTAMP("%c", TIMESTAMP "2008-12-25 15:30:00+00", "UTC") AS formatted;

+--------------------------+
| formatted                |
+--------------------------+
| Thu Dec 25 15:30:00 2008 |
+--------------------------+
SELECT FORMAT_TIMESTAMP("%b-%d-%Y", TIMESTAMP "2008-12-25 15:30:00+00") AS formatted;

+-------------+
| formatted   |
+-------------+
| Dec-25-2008 |
+-------------+
SELECT FORMAT_TIMESTAMP("%b %Y", TIMESTAMP "2008-12-25 15:30:00+00")
  AS formatted;

+-------------+
| formatted   |
+-------------+
| Dec 2008    |
+-------------+

PARSE_TIMESTAMP

PARSE_TIMESTAMP(format_string, timestamp_string[, time_zone])

Description

Converts a string representation of a timestamp to a TIMESTAMP object.

format_string contains the format elements that define how timestamp_string is formatted. Each element in timestamp_string must have a corresponding element in format_string. The location of each element in format_string must match the location of each element in timestamp_string.

-- This works because elements on both sides match.
SELECT PARSE_TIMESTAMP("%a %b %e %I:%M:%S %Y", "Thu Dec 25 07:30:00 2008")

-- This doesn't work because the year element is in different locations.
SELECT PARSE_TIMESTAMP("%a %b %e %Y %I:%M:%S", "Thu Dec 25 07:30:00 2008")

-- This doesn't work because one of the year elements is missing.
SELECT PARSE_TIMESTAMP("%a %b %e %I:%M:%S", "Thu Dec 25 07:30:00 2008")

-- This works because %c can find all matching elements in timestamp_string.
SELECT PARSE_TIMESTAMP("%c", "Thu Dec 25 07:30:00 2008")

The format string fully supports most format elements, except for %P.

When using PARSE_TIMESTAMP, keep the following in mind:

  • Unspecified fields. Any unspecified field is initialized from 1970-01-01 00:00:00.0. This initialization value uses the time zone specified by the function's time zone argument, if present. If not, the initialization value uses the default time zone, UTC. For instance, if the year is unspecified then it defaults to 1970, and so on.
  • Case insensitivity. Names, such as Monday, February, and so on, are case insensitive.
  • Whitespace. One or more consecutive white spaces in the format string matches zero or more consecutive white spaces in the timestamp string. In addition, leading and trailing white spaces in the timestamp string are always allowed, even if they are not in the format string.
  • Format precedence. When two (or more) format elements have overlapping information (for example both %F and %Y affect the year), the last one generally overrides any earlier ones, with some exceptions (see the descriptions of %s, %C, and %y).
  • Format divergence. %p can be used with am, AM, pm, and PM.

Return Data Type

TIMESTAMP

Example

SELECT PARSE_TIMESTAMP("%c", "Thu Dec 25 07:30:00 2008") AS parsed;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| parsed                  |
+-------------------------+
| 2008-12-25 07:30:00 UTC |
+-------------------------+

TIMESTAMP_SECONDS

TIMESTAMP_SECONDS(int64_expression)

Description

Interprets int64_expression as the number of seconds since 1970-01-01 00:00:00 UTC and returns a timestamp.

Return Data Type

TIMESTAMP

Example

SELECT TIMESTAMP_SECONDS(1230219000) AS timestamp_value;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_value         |
+-------------------------+
| 2008-12-25 15:30:00 UTC |
+-------------------------+

TIMESTAMP_MILLIS

TIMESTAMP_MILLIS(int64_expression)

Description

Interprets int64_expression as the number of milliseconds since 1970-01-01 00:00:00 UTC and returns a timestamp.

Return Data Type

TIMESTAMP

Example

SELECT TIMESTAMP_MILLIS(1230219000000) AS timestamp_value;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_value         |
+-------------------------+
| 2008-12-25 15:30:00 UTC |
+-------------------------+

TIMESTAMP_MICROS

TIMESTAMP_MICROS(int64_expression)

Description

Interprets int64_expression as the number of microseconds since 1970-01-01 00:00:00 UTC and returns a timestamp.

Return Data Type

TIMESTAMP

Example

SELECT TIMESTAMP_MICROS(1230219000000000) AS timestamp_value;

-- Display of results may differ, depending upon the environment and time zone where this query was executed.
+-------------------------+
| timestamp_value         |
+-------------------------+
| 2008-12-25 15:30:00 UTC |
+-------------------------+

UNIX_SECONDS

UNIX_SECONDS(timestamp_expression)

Description

Returns the number of seconds since 1970-01-01 00:00:00 UTC. Truncates higher levels of precision.

Return Data Type

INT64

Example

SELECT UNIX_SECONDS(TIMESTAMP "2008-12-25 15:30:00+00") AS seconds;

+------------+
| seconds    |
+------------+
| 1230219000 |
+------------+

UNIX_MILLIS

UNIX_MILLIS(timestamp_expression)

Description

Returns the number of milliseconds since 1970-01-01 00:00:00 UTC. Truncates higher levels of precision.

Return Data Type

INT64

Example

SELECT UNIX_MILLIS(TIMESTAMP "2008-12-25 15:30:00+00") AS millis;

+---------------+
| millis        |
+---------------+
| 1230219000000 |
+---------------+

UNIX_MICROS

UNIX_MICROS(timestamp_expression)

Description

Returns the number of microseconds since 1970-01-01 00:00:00 UTC. Truncates higher levels of precision.

Return Data Type

INT64

Example

SELECT UNIX_MICROS(TIMESTAMP "2008-12-25 15:30:00+00") AS micros;

+------------------+
| micros           |
+------------------+
| 1230219000000000 |
+------------------+

How time zones work with timestamp functions

A timestamp represents an absolute point in time, independent of any time zone. However, when a timestamp value is displayed, it is usually converted to a human-readable format consisting of a civil date and time (YYYY-MM-DD HH:MM:SS) and a time zone. Note that this is not the internal representation of the timestamp; it is only a human-understandable way to describe the point in time that the timestamp represents.

Some timestamp functions have a time zone argument. A time zone is needed to convert between civil time (YYYY-MM-DD HH:MM:SS) and absolute time (timestamps). A function like PARSE_TIMESTAMP takes an input string that represents a civil time and returns a timestamp that represents an absolute time. A time zone is needed for this conversion. A function like EXTRACT takes an input timestamp (absolute time) and converts it to civil time in order to extract a part of that civil time. This conversion requires a time zone. If no time zone is specified, the default time zone, UTC, is used.

Certain date and timestamp functions allow you to override the default time zone and specify a different one. You can specify a time zone by either supplying the time zone name (for example, America/Los_Angeles) or time zone offset from UTC (for example, -08).

To learn more about how time zones work with timestamps, see Time zones.

Interval functions

BigQuery supports the following INTERVAL functions.

MAKE_INTERVAL

MAKE_INTERVAL(year, month, day, hour, minute, second)

Description

Constructs an INTERVAL object using INT64 values representing the year, month, day, hour, minute, and second. All arguments are optional with default value of 0 and can be used as named arguments.

Return Data Type

INTERVAL

Example

SELECT
  MAKE_INTERVAL(1, 6, 15) AS i1,
  MAKE_INTERVAL(hour => 10, second => 20) AS i2,
  MAKE_INTERVAL(1, minute => 5, day => 2) AS i3

+--------------+---------------+-------------+
| i1           | i2            | i3          |
+--------------+---------------+-------------+
| 1-6 15 0:0:0 | 0-0 0 10:0:20 | 1-0 2 0:5:0 |
+--------------+---------------+-------------+
EXTRACT(part FROM interval_expression)

Description

Returns the value corresponding to the specified date part. The part must be one of YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND or MICROSECOND.

Return Data Type

INTERVAL

Example

SELECT
  EXTRACT(YEAR FROM i) AS year,
  EXTRACT(MONTH FROM i) AS month,
  EXTRACT(DAY FROM i) AS day,
  EXTRACT(HOUR FROM i) AS hour,
  EXTRACT(MINUTE FROM i) AS minute,
  EXTRACT(SECOND FROM i) AS second,
  EXTRACT(MILLISECOND FROM i) AS milli,
  EXTRACT(MICROSECOND FROM i) AS micro
FROM
  UNNEST([INTERVAL '1-2 3 4:5:6.789999' YEAR TO SECOND,
          INTERVAL '0-13 370 48:61:61' YEAR TO SECOND]) AS i

+------+-------+-----+------+--------+--------+-------+--------+
| year | month | day | hour | minute | second | milli | micro  |
+------+-------+-----+------+--------+--------+-------+--------+
| 1    | 2     | 3   | 4    | 5      | 6      | 789   | 789999 |
| 1    | 1     | 370 | 49   | 2      | 1      | 0     | 0      |
+------+-------+-----+------+--------+--------+-------+--------+

JUSTIFY_DAYS

JUSTIFY_DAYS(interval_expression)

Description

Normalizes the day part of the interval to the range from -29 to 29 by incrementing/decrementing the month or year part of the interval.

Return Data Type

INTERVAL

Example

SELECT
  JUSTIFY_DAYS(INTERVAL 29 DAY) AS i1,
  JUSTIFY_DAYS(INTERVAL -30 DAY) AS i2,
  JUSTIFY_DAYS(INTERVAL 31 DAY) AS i3,
  JUSTIFY_DAYS(INTERVAL -65 DAY) AS i4,
  JUSTIFY_DAYS(INTERVAL 370 DAY) AS i5

+--------------+--------------+-------------+---------------+--------------+
| i1           | i2           | i3          | i4            | i5           |
+--------------+--------------+-------------+---------------+--------------+
| 0-0 29 0:0:0 | -0-1 0 0:0:0 | 0-1 1 0:0:0 | -0-2 -5 0:0:0 | 1-0 10 0:0:0 |
+--------------+--------------+-------------+---------------+--------------+

JUSTIFY_HOURS

JUSTIFY_HOURS(interval_expression)

Description

Normalizes the time part of the interval to the range from -23:59:59.999999 to 23:59:59.999999 by incrementing/decrementing the day part of the interval.

Return Data Type

INTERVAL

Example

SELECT
  JUSTIFY_HOURS(INTERVAL 23 HOUR) AS i1,
  JUSTIFY_HOURS(INTERVAL -24 HOUR) AS i2,
  JUSTIFY_HOURS(INTERVAL 47 HOUR) AS i3,
  JUSTIFY_HOURS(INTERVAL -12345 MINUTE) AS i4

+--------------+--------------+--------------+-----------------+
| i1           | i2           | i3           | i4              |
+--------------+--------------+--------------+-----------------+
| 0-0 0 23:0:0 | 0-0 -1 0:0:0 | 0-0 1 23:0:0 | 0-0 -8 -13:45:0 |
+--------------+--------------+--------------+-----------------+

JUSTIFY_INTERVAL

JUSTIFY_INTERVAL(interval_expression)

Description

Normalizes the days and time parts of the interval.

Return Data Type

INTERVAL

Example

SELECT JUSTIFY_INTERVAL(INTERVAL '29 49:00:00' DAY TO SECOND) AS i

+-------------+
| i           |
+-------------+
| 0-1 1 1:0:0 |
+-------------+

Geography functions

The geography functions operate on or generate BigQuery GEOGRAPHY values. The signature of any geography function starts with ST_. BigQuery supports the following functions that can be used to analyze geographical data, determine spatial relationships between geographical features, and construct or manipulate GEOGRAPHYs.

All BigQuery geography functions return NULL if any input argument is NULL.

Categories

The geography functions are grouped into the following categories based on their behavior:

Category Functions Description
Constructors ST_GEOGPOINT
ST_MAKELINE
ST_MAKEPOLYGON
ST_MAKEPOLYGONORIENTED
Functions that build new geography values from coordinates or existing geographies.
Parsers ST_GEOGFROM
ST_GEOGFROMGEOJSON
ST_GEOGFROMTEXT
ST_GEOGFROMWKB
ST_GEOGPOINTFROMGEOHASH
Functions that create geographies from an external format such as WKT and GeoJSON.
Formatters ST_ASBINARY
ST_ASGEOJSON
ST_ASTEXT
ST_GEOHASH
Functions that export geographies to an external format such as WKT.
Transformations ST_BOUNDARY
ST_BUFFER
ST_BUFFERWITHTOLERANCE
ST_CENTROID
ST_CENTROID_AGG (Aggregate)
ST_CLOSESTPOINT
ST_CONVEXHULL
ST_DIFFERENCE
ST_EXTERIORRING
ST_INTERIORRINGS
ST_INTERSECTION
ST_SIMPLIFY
ST_SNAPTOGRID
ST_UNION
ST_UNION_AGG (Aggregate)
Functions that generate a new geography based on input.
Accessors ST_DIMENSION
ST_DUMP
ST_ENDPOINT
ST_GEOMETRYTYPE
ST_ISCOLLECTION
ST_ISEMPTY
ST_NPOINTS
ST_NUMGEOMETRIES
ST_NUMPOINTS
ST_POINTN
ST_STARTPOINT
ST_X
ST_Y
Functions that provide access to properties of a geography without side-effects.
Predicates ST_CONTAINS
ST_COVEREDBY
ST_COVERS
ST_DISJOINT
ST_DWITHIN
ST_EQUALS
ST_INTERSECTS
ST_INTERSECTSBOX
ST_TOUCHES
ST_WITHIN
Functions that return TRUE or FALSE for some spatial relationship between two geographies or some property of a geography. These functions are commonly used in filter clauses.
Measures ST_ANGLE
ST_AREA
ST_AZIMUTH
ST_BOUNDINGBOX
ST_DISTANCE
ST_EXTENT (Aggregate)
ST_LENGTH
ST_MAXDISTANCE
ST_PERIMETER
Functions that compute measurements of one or more geographies.
Clustering ST_CLUSTERDBSCAN Functions that perform clustering on geographies.
S2 functions S2_CELLIDFROMPOINT
S2_COVERINGCELLIDS
Functions for working with S2 cell coverings of GEOGRAPHY.

S2_CELLIDFROMPOINT

S2_CELLIDFROMPOINT(point_geography[, level => cell_level])

Description

Returns the S2 cell ID covering a point GEOGRAPHY.

  • The optional INT64 parameter level specifies the S2 cell level for the returned cell. Naming this argument is optional.

This is advanced functionality for interoperability with systems utilizing the S2 Geometry Library.

Constraints

  • Returns the cell ID as a signed INT64 bit-equivalent to unsigned 64-bit integer representation.
  • Can return negative cell IDs.
  • Valid S2 cell levels are 0 to 30.
  • level defaults to 30 if not explicitly specified.
  • The function only supports a single point GEOGRAPHY. Use the SAFE prefix if the input can be multipoint, linestring, polygon, or an empty GEOGRAPHY.
  • To compute the covering of a complex GEOGRAPHY, use S2_COVERINGCELLIDS.

Return type

INT64

Example

WITH data AS (
  SELECT 1 AS id, ST_GeogPoint(-122, 47) AS geo
  UNION ALL
  -- empty geography is not supported
  SELECT 2 AS id, ST_GeogFromText('POINT EMPTY') AS geo
  UNION ALL
  -- only points are supported
  SELECT 3 AS id, ST_GeogFromText('LINESTRING(1 2, 3 4)') AS geo
)
SELECT id,
       SAFE.S2_CellIdFromPoint(geo) cell30,
       SAFE.S2_CellIdFromPoint(geo, level => 10) cell10
FROM data;

+----+---------------------+---------------------+
| id | cell30              | cell10              |
+----+---------------------+---------------------+
| 1  | 6093613931972369317 | 6093613287902019584 |
| 2  | NULL                | NULL                |
| 3  | NULL                | NULL                |
+----+---------------------+---------------------+

S2_COVERINGCELLIDS

S2_COVERINGCELLIDS(
    geography
    [, min_level => cell_level]
    [, max_level => cell_level]
    [, max_cells => max_cells]
    [, buffer => buffer])

Description

Returns an array of S2 cell ids that cover the input GEOGRAPHY. The function returns at most max_cells cells. The optional arguments min_level and max_level specify minimum and maximum levels for returned S2 cells. The array size is limited by the optional max_cells argument. The optional buffer argument specifies a buffering factor in meters; the region being covered is expanded from the extent of the input geography by this amount.

This is advanced functionality for interoperability with systems utilizing the S2 Geometry Library.

Constraints

  • Returns the cell ID as a signed INT64 bit-equivalent to unsigned 64-bit integer representation.
  • Can return negative cell IDs.
  • Valid S2 cell levels are 0 to 30.
  • max_cells defaults to 8 if not explicitly specified.
  • buffer should be nonnegative. It defaults to 0.0 meters if not explicitly specified.

Return type

ARRAY<INT64>

Example

WITH data AS (
  SELECT 1 AS id, ST_GeogPoint(-122, 47) AS geo
  UNION ALL
  SELECT 2 AS id, ST_GeogFromText('POINT EMPTY') AS geo
  UNION ALL
  SELECT 3 AS id, ST_GeogFromText('LINESTRING(-122.12 47.67, -122.19 47.69)') AS geo
)
SELECT id, S2_CoveringCellIDs(geo, min_level => 12) cells
FROM data;

+----+--------------------------------------------------------------------------------------+
| id | cells                                                                                |
+----+--------------------------------------------------------------------------------------+
| 1  | [6093613931972369317]                                                                |
| 2  | []                                                                                   |
| 3  | [6093384954555662336, 6093390709811838976, 6093390735581642752, 6093390740145045504, |
|    |  6093390791416217600, 6093390812891054080, 6093390817187069952, 6093496378892222464] |
+----+--------------------------------------------------------------------------------------+

ST_ANGLE

ST_ANGLE(point_geography_1, point_geography_2, point_geography_3)

Description

Takes three point GEOGRAPHY values, which represent two intersecting lines. Returns the angle between these lines. Point 2 and point 1 represent the first line and point 2 and point 3 represent the second line. The angle between these lines is in radians, in the range [0, 2pi). The angle is measured clockwise from the first line to the second line.

ST_ANGLE has the following edge cases:

  • If points 2 and 3 are the same, returns NULL.
  • If points 2 and 1 are the same, returns NULL.
  • If points 2 and 3 are exactly antipodal, returns NULL.
  • If points 2 and 1 are exactly antipodal, returns NULL.
  • If any of the input geographies are not single points or are the empty geography, then throws an error.

Return type

FLOAT64

Example

WITH geos AS (
  SELECT 1 id, ST_GEOGPOINT(1, 0) geo1, ST_GEOGPOINT(0, 0) geo2, ST_GEOGPOINT(0, 1) geo3 UNION ALL
  SELECT 2 id, ST_GEOGPOINT(0, 0), ST_GEOGPOINT(1, 0), ST_GEOGPOINT(0, 1) UNION ALL
  SELECT 3 id, ST_GEOGPOINT(1, 0), ST_GEOGPOINT(0, 0), ST_GEOGPOINT(1, 0) UNION ALL
  SELECT 4 id, ST_GEOGPOINT(1, 0) geo1, ST_GEOGPOINT(0, 0) geo2, ST_GEOGPOINT(0, 0) geo3 UNION ALL
  SELECT 5 id, ST_GEOGPOINT(0, 0), ST_GEOGPOINT(-30, 0), ST_GEOGPOINT(150, 0) UNION ALL
  SELECT 6 id, ST_GEOGPOINT(0, 0), null, null UNION ALL
  SELECT 7 id, null, ST_GEOGPOINT(0, 0), null UNION ALL
  SELECT 8 id, null, null, ST_GEOGPOINT(0, 0))
SELECT ST_ANGLE(geo1,geo2,geo3) AS angle FROM geos ORDER BY id;

+---------------------+
| angle               |
+---------------------+
| 4.71238898038469    |
| 0.78547432161873854 |
| 0                   |
| NULL                |
| NULL                |
| NULL                |
| NULL                |
| NULL                |
+---------------------+

ST_AREA

ST_AREA(geography_expression[, use_spheroid])

Description

Returns the area in square meters covered by the polygons in the input GEOGRAPHY.

If geography_expression is a point or a line, returns zero. If geography_expression is a collection, returns the area of the polygons in the collection; if the collection does not contain polygons, returns zero.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

FLOAT64

ST_ASBINARY

ST_ASBINARY(geography_expression)

Description

Returns the WKB representation of an input GEOGRAPHY.

See ST_GEOGFROMWKB to construct a GEOGRAPHY from WKB.

Return type

BYTES

ST_ASGEOJSON

ST_ASGEOJSON(geography_expression)

Description

Returns the RFC 7946 compliant GeoJSON representation of the input GEOGRAPHY.

A BigQuery GEOGRAPHY has spherical geodesic edges, whereas a GeoJSON Geometry object explicitly has planar edges. To convert between these two types of edges, BigQuery adds additional points to the line where necessary so that the resulting sequence of edges remains within 10 meters of the original edge.

See ST_GEOGFROMGEOJSON to construct a GEOGRAPHY from GeoJSON.

Return type

STRING

ST_ASTEXT

ST_ASTEXT(geography_expression)

Description

Returns the WKT representation of an input GEOGRAPHY.

See ST_GEOGFROMTEXT to construct a GEOGRAPHY from WKT.

Return type

STRING

ST_AZIMUTH

ST_AZIMUTH(point_geography_1, point_geography_2)

Description

Takes two point GEOGRAPHY values, and returns the azimuth of the line segment formed by points 1 and 2. The azimuth is the angle in radians measured between the line from point 1 facing true North to the line segment from point 1 to point 2.

The positive angle is measured clockwise on the surface of a sphere. For example, the azimuth for a line segment:

  • Pointing North is 0
  • Pointing East is PI/2
  • Pointing South is PI
  • Pointing West is 3PI/2

ST_AZIMUTH has the following edge cases:

  • If the two input points are the same, returns NULL.
  • If the two input points are exactly antipodal, returns NULL.
  • If either of the input geographies are not single points or are the empty geography, throws an error.

Return type

FLOAT64

Example


WITH geos AS (
  SELECT 1 id, st_geogpoint(1, 0) geo1, st_geogpoint(0, 0) geo2 UNION ALL
  SELECT 2, st_geogpoint(0, 0), st_geogpoint(1, 0) UNION ALL
  SELECT 3, st_geogpoint(0, 0), st_geogpoint(0, 1) UNION ALL
  -- identical
  SELECT 4, st_geogpoint(0, 0) geo1, st_geogpoint(0, 0) geo2 UNION ALL
  -- antipode
  SELECT 5, st_geogpoint(-30, 0), st_geogpoint(150, 0) UNION ALL
  -- nulls
  SELECT 6, st_geogpoint(0, 0), null UNION ALL
  SELECT 7, null, st_geogpoint(0, 0))
SELECT ST_AZIMUTH(geo1, geo2) AS azimuth FROM geos ORDER BY id;

+--------------------+
| azimuth            |
+--------------------+
| 4.71238898038469   |
| 1.5707963267948966 |
| 0                  |
| NULL               |
| NULL               |
| NULL               |
| NULL               |
+--------------------+

ST_BOUNDARY

ST_BOUNDARY(geography_expression)

Description

Returns a single GEOGRAPHY that contains the union of the boundaries of each component in the given input GEOGRAPHY.

The boundary of each component of a GEOGRAPHY is defined as follows:

  • The boundary of a point is empty.
  • The boundary of a linestring consists of the endpoints of the linestring.
  • The boundary of a polygon consists of the linestrings that form the polygon shell and each of the polygon's holes.

Return type

GEOGRAPHY

ST_BOUNDINGBOX

ST_BOUNDINGBOX(geography_expression)

Description

Returns a STRUCT that represents the bounding box for the specified geography. The bounding box is the minimal rectangle that encloses the geography. The edges of the rectangle follow constant lines of longitude and latitude.

Caveats:

  • Returns NULL if the input is NULL or an empty geography.
  • The bounding box might cross the antimeridian if this allows for a smaller rectangle. In this case, the bounding box has one of its longitudinal bounds outside of the [-180, 180] range, so that xmin is smaller than the eastmost value xmax.

Return type

STRUCT<xmin FLOAT64, ymin FLOAT64, xmax FLOAT64, ymax FLOAT64>.

Bounding box parts:

  • xmin: The westmost constant longitude line that bounds the rectangle.
  • xmax: The eastmost constant longitude line that bounds the rectangle.
  • ymin: The minimum constant latitude line that bounds the rectangle.
  • ymax: The maximum constant latitude line that bounds the rectangle.

Example

WITH data AS (
  SELECT 1 id, ST_GEOGFROMTEXT('polygon((-125 48, -124 46, -117 46, -117 49, -125 48))') g
  UNION ALL
  SELECT 2 id, ST_GEOGFROMTEXT('polygon((172 53, -130 55, -141 70, 172 53))') g
  UNION ALL
  SELECT 3 id, ST_GEOGFROMTEXT('point empty') g
  UNION ALL
  SELECT 4 id, ST_GEOGFROMTEXT('polygon((172 53, -141 70, -130 55, 172 53))', oriented => TRUE)
)
SELECT id, ST_BOUNDINGBOX(g) AS box
FROM data

+----+------------------------------------------+
| id | box                                      |
+----+------------------------------------------+
| 1  | {xmin:-125, ymin:46, xmax:-117, ymax:49} |
| 2  | {xmin:172, ymin:53, xmax:230, ymax:70}   |
| 3  | NULL                                     |
| 4  | {xmin:-180, ymin:-90, xmax:180, ymax:90} |
+----+------------------------------------------+

See ST_EXTENT for the aggregate version of ST_BOUNDINGBOX.

ST_BUFFER

ST_BUFFER(
    geography,
    buffer_radius
    [, num_seg_quarter_circle => num_segments]
    [, use_spheroid => boolean_expression]
    [, endcap => endcap_style]
    [, side => line_side])

Description

Returns a GEOGRAPHY that represents the buffer around the input GEOGRAPHY. This function is similar to ST_BUFFERWITHTOLERANCE, but you specify the number of segments instead of providing tolerance to determine how much the resulting geography can deviate from the ideal buffer radius.

  • geography: The input GEOGRAPHY to encircle with the buffer radius.
  • buffer_radius: DOUBLE that represents the radius of the buffer around the input geography. The radius is in meters. Note that polygons contract when buffered with a negative buffer_radius. Polygon shells and holes that are contracted to a point are discarded.
  • num_seg_quarter_circle: (Optional) DOUBLE specifies the number of segments that are used to approximate a quarter circle. The default value is 8.0. Naming this argument is optional.
  • endcap: (Optional) STRING allows you to specify one of two endcap styles: ROUND and FLAT. The default value is ROUND. This option only affects the endcaps of buffered linestrings.
  • side: (Optional) STRING allows you to specify one of three possibilities for lines: BOTH, LEFT, and RIGHT. The default is BOTH. This option only affects how linestrings are buffered.
  • use_spheroid: (Optional) BOOL determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere. The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

GEOGRAPHY

Example

The following example shows the result of ST_BUFFER on a point. A buffered point is an approximated circle. When num_seg_quarter_circle = 2, there are two line segments in a quarter circle, and therefore the buffered circle has eight sides and ST_NUMPOINTS returns nine vertices. When num_seg_quarter_circle = 8, there are eight line segments in a quarter circle, and therefore the buffered circle has thirty-two sides and ST_NUMPOINTS returns thirty-three vertices.

SELECT
  -- num_seg_quarter_circle=2
  ST_NumPoints(ST_Buffer(ST_GeogFromText('POINT(1 2)'), 50, 2)) AS eight_sides,
  -- num_seg_quarter_circle=8, since 8 is the default
  st_NumPoints(ST_Buffer(ST_GeogFromText('POINT(100 2)'), 50)) AS thirty_two_sides;

+-------------+------------------+
| eight_sides | thirty_two_sides |
+-------------+------------------+
| 9           | 33               |
+-------------+------------------+

ST_BUFFERWITHTOLERANCE

ST_BUFFERWITHTOLERANCE(
    geography,
    buffer_radius,
    tolerance_meters => tolernace
    [, use_spheroid => boolean_expression]
    [, endcap => endcap_style]
    [, side => line_side])

Returns a GEOGRAPHY that represents the buffer around the input GEOGRAPHY. This function is similar to ST_BUFFER, but you provide tolerance instead of segments to determine how much the resulting geography can deviate from the ideal buffer radius.

  • geography: The input GEOGRAPHY to encircle with the buffer radius.
  • buffer_radius: DOUBLE that represents the radius of the buffer around the input geography. The radius is in meters. Note that polygons contract when buffered with a negative buffer_radius. Polygon shells and holes that are contracted to a point are discarded.
  • tolerance_meters: DOUBLE specifies a tolerance in meters with which the shape is approximated. Tolerance determines how much a polygon can deviate from the ideal radius. Naming this argument is optional.
  • endcap: (Optional) STRING allows you to specify one of two endcap styles: ROUND and FLAT. The default value is ROUND. This option only affects the endcaps of buffered linestrings.
  • side: (Optional) STRING allows you to specify one of three possible line styles: BOTH, LEFT, and RIGHT. The default is BOTH. This option only affects the endcaps of buffered linestrings.
  • use_spheroid: (Optional) BOOL determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere. The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

GEOGRAPHY

Example

The following example shows the results of ST_BUFFERWITHTOLERANCE on a point, given two different values for tolerance but with the same buffer radius of 100. A buffered point is an approximated circle. When tolerance_meters=25, the tolerance is a large percentage of the buffer radius, and therefore only five segments are used to approximate a circle around the input point. When tolerance_meters=1, the tolerance is a much smaller percentage of the buffer radius, and therefore twenty-four edges are used to approximate a circle around the input point.

SELECT
  -- tolerance_meters=25, or 25% of the buffer radius.
  ST_NumPoints(ST_BufferWithTolerance(ST_GeogFromText('POINT(1 2)'), 100, 25)) AS five_sides,
  -- tolerance_meters=1, or 1% of the buffer radius.
  st_NumPoints(ST_BufferWithTolerance(ST_GeogFromText('POINT(100 2)'), 100, 1)) AS twenty_four_sides;

+------------+-------------------+
| five_sides | twenty_four_sides |
+------------+-------------------+
| 6          | 24                |
+------------+-------------------+

ST_CENTROID

ST_CENTROID(geography_expression)

Description

Returns the centroid of the input GEOGRAPHY as a single point GEOGRAPHY.

The centroid of a GEOGRAPHY is the weighted average of the centroids of the highest-dimensional components in the GEOGRAPHY. The centroid for components in each dimension is defined as follows:

  • The centroid of points is the arithmetic mean of the input coordinates.
  • The centroid of linestrings is the centroid of all the edges weighted by length. The centroid of each edge is the geodesic midpoint of the edge.
  • The centroid of a polygon is its center of mass.

If the input GEOGRAPHY is empty, an empty GEOGRAPHY is returned.

Constraints

In the unlikely event that the centroid of a GEOGRAPHY cannot be defined by a single point on the surface of the Earth, a deterministic but otherwise arbitrary point is returned. This can only happen if the centroid is exactly at the center of the Earth, such as the centroid for a pair of antipodal points, and the likelihood of this happening is vanishingly small.

Return type

GEOGRAPHY

ST_CENTROID_AGG

ST_CENTROID_AGG(geography)

Description

Computes the centroid of the set of input GEOGRAPHYs as a single point GEOGRAPHY.

The centroid over the set of input GEOGRAPHYs is the weighted average of the centroid of each individual GEOGRAPHY. Only the GEOGRAPHYs with the highest dimension present in the input contribute to the centroid of the entire set. For example, if the input contains both GEOGRAPHYs with lines and GEOGRAPHYs with only points, ST_CENTROID_AGG returns the weighted average of the GEOGRAPHYs with lines, since those have maximal dimension. In this example, ST_CENTROID_AGG ignores GEOGRAPHYs with only points when calculating the aggregate centroid.

ST_CENTROID_AGG ignores NULL input GEOGRAPHY values.

See ST_CENTROID for the non-aggregate version of ST_CENTROID_AGG and the definition of centroid for an individual GEOGRAPHY value.

Return type

GEOGRAPHY

Example

The following queries compute the aggregate centroid over a set of GEOGRAPHY values. The input to the first query contains only points, and therefore each value contribute to the aggregate centroid. Also notice that ST_CENTROID_AGG is not equivalent to calling ST_CENTROID on the result of ST_UNION_AGG; duplicates are removed by the union, unlike ST_CENTROID_AGG. The input to the second query has mixed dimensions, and only values with the highest dimension in the set, the lines, affect the aggregate centroid.

SELECT ST_CENTROID_AGG(points) AS st_centroid_agg,
ST_CENTROID(ST_UNION_AGG(points)) AS centroid_of_union
FROM UNNEST([ST_GEOGPOINT(1, 5),
             ST_GEOGPOINT(1, 2),
             ST_GEOGPOINT(1, -1),
             ST_GEOGPOINT(1, -1)]) points;

+---------------------------+-------------------+
| st_centroid_agg           | centroid_of_union |
+---------------------------+-------------------+
| POINT(1 1.24961422620969) | POINT(1 2)        |
+---------------------------+-------------------+

SELECT ST_CENTROID_AGG(points) AS st_centroid_agg
FROM UNNEST([ST_GEOGPOINT(50, 26),
             ST_GEOGPOINT(34, 33.3),
             ST_GEOGFROMTEXT('LINESTRING(0 -1, 0 1)')
             ST_GEOGFROMTEXT('LINESTRING(0 1, 0 3)')]) points;

+-----------------+
| st_centroid_agg |
+-----------------+
| POINT(0 1)      |
+-----------------+

ST_CLOSESTPOINT

ST_CLOSESTPOINT(geography_1, geography_2[, use_spheroid])

Description

Returns a GEOGRAPHY containing a point on geography_1 with the smallest possible distance to geography_2. This implies that the distance between the point returned by ST_CLOSESTPOINT and geography_2 is less than or equal to the distance between any other point on geography_1 and geography_2.

If either of the input GEOGRAPHYs is empty, ST_CLOSESTPOINT returns NULL.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

GEOGRAPHY

ST_CLUSTERDBSCAN

ST_CLUSTERDBSCAN(geography_column, epsilon, minimum_geographies)
OVER over_clause

over_clause:
  { named_window | ( [ window_specification ] ) }

window_specification:
  [ named_window ]
  [ PARTITION BY partition_expression [, ...] ]
  [ ORDER BY expression [ { ASC | DESC }  ] [, ...] ]

Performs DBSCAN clustering on a column of geographies. Returns a 0-based cluster number.

To learn more about the OVER clause and how to use it, see Window function calls.

Input parameters

  • geography_column: A column of GEOGRAPHYs that is clustered.
  • epsilon: The epsilon that specifies the radius, measured in meters, around a core value. Non-negative FLOAT64 value.
  • minimum_geographies: Specifies the minimum number of geographies in a single cluster. Only dense input forms a cluster, otherwise it is classified as noise. Non-negative INT64 value.

Geography types and the DBSCAN algorithm

The DBSCAN algorithm identifies high-density clusters of data and marks outliers in low-density areas of noise. Geographies passed in through geography_column are classified in one of three ways by the DBSCAN algorithm:

  • Core value: A geography is a core value if it is within epsilon distance of minimum_geographies geographies, including itself. The core value starts a new cluster, or is added to the same cluster as a core value within epsilon distance. Core values are grouped in a cluster together with all other core and border values that are within epsilon distance.
  • Border value: A geography is a border value if it is within epsilon distance of a core value. It is added to the same cluster as a core value within epsilon distance. A border value may be within epsilon distance of more than one cluster. In this case, it may be arbitrarily assigned to either cluster and the function will produce the same result in subsequent calls.
  • Noise: A geography is noise if it is neither a core nor a border value. Noise values are assigned to a NULL cluster. An empty GEOGRAPHY is always classified as noise.

Constraints

  • The argument minimum_geographies is a non-negative INT64and epsilon is a non-negative FLOAT64.
  • An empty geography cannot join any cluster.
  • Multiple clustering assignments could be possible for a border value. If a geography is a border value, ST_CLUSTERDBSCAN will assign it to an arbitrary valid cluster.

Return type

INT64 for each geography in the geography column.

Examples

This example performs DBSCAN clustering with a radius of 100,000 meters with a minimum_geographies argument of 1. The geographies being analyzed are a mixture of points, lines, and polygons.

WITH Geos as
  (SELECT 1 as row_id, st_geogfromtext('point empty') as geo UNION ALL
    SELECT 2, st_geogfromtext('multipoint(1 1, 2 2, 4 4, 5 2)') UNION ALL
    SELECT 3, st_geogfromtext('point(14 15)') UNION ALL
    SELECT 4, st_geogfromtext('linestring(40 1, 42 34, 44 39)') UNION ALL
    SELECT 5, st_geogfromtext('polygon((40 2, 40 1, 41 2, 40 2))'))
SELECT row_id, geo, ST_CLUSTERDBSCAN(geo, 1e5, 1) OVER () AS cluster_num FROM
Geos ORDER BY row_id
+--------+-----------------------------------+-------------+
| row_id |                geo                | cluster_num |
+--------+-----------------------------------+-------------+
|      1 |          GEOMETRYCOLLECTION EMPTY |        NULL |
|      2 |    MULTIPOINT(1 1, 2 2, 5 2, 4 4) |           0 |
|      3 |                      POINT(14 15) |           1 |
|      4 |    LINESTRING(40 1, 42 34, 44 39) |           2 |
|      5 | POLYGON((40 2, 40 1, 41 2, 40 2)) |           2 |
+--------+-----------------------------------+-------------+

ST_CONTAINS

ST_CONTAINS(geography_1, geography_2)

Description

Returns TRUE if no point of geography_2 is outside geography_1, and the interiors intersect; returns FALSE otherwise.

NOTE: A GEOGRAPHY does not contain its own boundary. Compare with ST_COVERS.

Return type

BOOL

Example

The following query tests whether the polygon POLYGON((1 1, 20 1, 10 20, 1 1)) contains each of the three points (0, 0), (1, 1), and (10, 10), which lie on the exterior, the boundary, and the interior of the polygon respectively.

SELECT
  ST_GEOGPOINT(i, i) AS p,
  ST_CONTAINS(ST_GEOGFROMTEXT('POLYGON((1 1, 20 1, 10 20, 1 1))'),
              ST_GEOGPOINT(i, i)) AS `contains`
FROM UNNEST([0, 1, 10]) AS i;

+--------------+----------+
| p            | contains |
+--------------+----------+
| POINT(0 0)   | false    |
| POINT(1 1)   | false    |
| POINT(10 10) | true     |
+--------------+----------+

ST_CONVEXHULL

ST_CONVEXHULL(geography_expression)

Description

Returns the convex hull for the input GEOGRAPHY. The convex hull is the smallest convex GEOGRAPHY that covers the input. A GEOGRAPHY is convex if for every pair of points in the GEOGRAPHY, the geodesic edge connecting the points are also contained in the same GEOGRAPHY.

In most cases, the convex hull consists of a single polygon. Notable edge cases include the following:

  • The convex hull of a single point is also a point.
  • The convex hull of two or more collinear points is a linestring as long as that linestring is convex.
  • If the input GEOGRAPHY spans more than a hemisphere, the convex hull is the full globe. This includes any input that contains a pair of antipodal points.
  • ST_CONVEXHULL returns NULL if the input is either NULL or the empty GEOGRAPHY.

Return type

GEOGRAPHY

Examples

The convex hull returned by ST_CONVEXHULL can be a point, linestring, or a polygon, depending on the input.

WITH Geographies AS
 (SELECT ST_GEOGFROMTEXT('POINT(1 1)') AS g UNION ALL
  SELECT ST_GEOGFROMTEXT('LINESTRING(1 1, 2 2)') AS g UNION ALL
  SELECT ST_GEOGFROMTEXT('MULTIPOINT(2 11, 4 12, 0 15, 1 9, 1 12)') AS g)
SELECT
  g AS input_geography,
  ST_CONVEXHULL(g) AS convex_hull
FROM Geographies;

+-----------------------------------------+--------------------------------------------------------+
|             input_geography             |                      convex_hull                       |
+-----------------------------------------+--------------------------------------------------------+
|                              POINT(1 1) |                             POINT(0.999999999999943 1) |
|                    LINESTRING(1 1, 2 2) | LINESTRING(2 2, 1.49988573656168 1.5000570914792, 1 1) |
| MULTIPOINT(1 9, 4 12, 2 11, 1 12, 0 15) |                        POLYGON((1 9, 4 12, 0 15, 1 9)) |
+-----------------------------------------+--------------------------------------------------------+

ST_COVEREDBY

ST_COVEREDBY(geography_1, geography_2)

Description

Returns FALSE if geography_1 or geography_2 is empty. Returns TRUE if no points of geography_1 lie in the exterior of geography_2.

Given two GEOGRAPHYs a and b, ST_COVEREDBY(a, b) returns the same result as ST_COVERS(b, a). Note the opposite order of arguments.

Return type

BOOL

ST_COVERS

ST_COVERS(geography_1, geography_2)

Description

Returns FALSE if geography_1 or geography_2 is empty. Returns TRUE if no points of geography_2 lie in the exterior of geography_1.

Return type

BOOL

Example

The following query tests whether the polygon POLYGON((1 1, 20 1, 10 20, 1 1)) covers each of the three points (0, 0), (1, 1), and (10, 10), which lie on the exterior, the boundary, and the interior of the polygon respectively.

SELECT
  ST_GEOGPOINT(i, i) AS p,
  ST_COVERS(ST_GEOGFROMTEXT('POLYGON((1 1, 20 1, 10 20, 1 1))'),
            ST_GEOGPOINT(i, i)) AS `covers`
FROM UNNEST([0, 1, 10]) AS i;

+--------------+--------+
| p            | covers |
+--------------+--------+
| POINT(0 0)   | false  |
| POINT(1 1)   | true   |
| POINT(10 10) | true   |
+--------------+--------+

ST_DIFFERENCE

ST_DIFFERENCE(geography_1, geography_2)

Description

Returns a GEOGRAPHY that represents the point set difference of geography_1 and geography_2. Therefore, the result consists of the part of geography_1 that does not intersect with geography_2.

If geometry_1 is completely contained in geometry_2, then ST_DIFFERENCE returns an empty GEOGRAPHY.

Constraints

The underlying geometric objects that a BigQuery GEOGRAPHY represents correspond to a closed point set. Therefore, ST_DIFFERENCE is the closure of the point set difference of geography_1 and geography_2. This implies that if geography_1 and geography_2 intersect, then a portion of the boundary of geography_2 could be in the difference.

Return type

GEOGRAPHY

Example

The following query illustrates the diffence between geog1, a larger polygon POLYGON((0 0, 10 0, 10 10, 0 0)) and geog1, a smaller polygon POLYGON((4 2, 6 2, 8 6, 4 2)) that intersects with geog1. The result is geog1 with a hole where geog2 intersects with it.

SELECT
  ST_DIFFERENCE(
      ST_GEOGFROMTEXT("POLYGON((0 0, 10 0, 10 10, 0 0))"),
      ST_GEOGFROMTEXT("POLYGON((4 2, 6 2, 8 6, 4 2))")
  );

+--------------------------------------------------------+
| difference_of_geog1_and_geog2                          |
+--------------------------------------------------------+
| POLYGON((0 0, 10 0, 10 10, 0 0), (8 6, 6 2, 4 2, 8 6)) |
+--------------------------------------------------------+

ST_DIMENSION

ST_DIMENSION(geography_expression)

Description

Returns the dimension of the highest-dimensional element in the input GEOGRAPHY.

The dimension of each possible element is as follows:

  • The dimension of a point is 0.
  • The dimension of a linestring is 1.
  • The dimension of a polygon is 2.

If the input GEOGRAPHY is empty, ST_DIMENSION returns -1.

Return type

INT64

ST_DISJOINT

ST_DISJOINT(geography_1, geography_2)

Description

Returns TRUE if the intersection of geography_1 and geography_2 is empty, that is, no point in geography_1 also appears in geography_2.

ST_DISJOINT is the logical negation of ST_INTERSECTS.

Return type

BOOL

ST_DISTANCE

ST_DISTANCE(geography_1, geography_2[, use_spheroid])

Description

Returns the shortest distance in meters between two non-empty GEOGRAPHYs.

If either of the input GEOGRAPHYs is empty, ST_DISTANCE returns NULL.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

FLOAT64

ST_DUMP

ST_DUMP(geography[, dimension])

Description

Returns an ARRAY of simple GEOGRAPHYs where each element is a component of the input GEOGRAPHY. A simple GEOGRAPHY consists of a single point, linestring, or polygon. If the input GEOGRAPHY is simple, the result is a single element. When the input GEOGRAPHY is a collection, ST_DUMP returns an ARRAY with one simple GEOGRAPHY for each component in the collection.

If dimension is provided, the function only returns GEOGRAPHYs of the corresponding dimension. A dimension of -1 is equivalent to omitting dimension.

Return Type

ARRAY

Examples

The following example shows how ST_DUMP returns the simple geographies within a complex geography.

WITH example AS (
  SELECT ST_GeogFromText('POINT(0 0)') AS geography
  UNION ALL
  SELECT ST_GeogFromText('MULTIPOINT(0 0, 1 1)') AS geography
  UNION ALL
  SELECT ST_GeogFromText('GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(1 2, 2 1))'))
SELECT
  geography AS original_geography,
  ST_DUMP(geography) AS dumped_geographies
FROM example

+-------------------------------------+-------------------------------+
|         original_geographies        |      dumped_geographies       |
+-------------------------------------+-------------------------------+
| POINT(0 0)                          | [POINT(0 0)]                  |
+-------------------------------------+-------------------------------+
| MULTIPOINT(0 0, 1 1)                | [POINT(0 0), POINT(1 1)]      |
+-------------------------------------+-------------------------------+
| GEOMETRYCOLLECTION(POINT(0 0),      | [POINT(0 0),                  |
|   LINESTRING(1 2, 2 1))             |   LINESTRING(1 2, 2 1)]       |
+-------------------------------------+-------------------------------+

The following example shows how ST_DUMP with the dimension argument only returns simple geographies of the given dimension.

WITH example AS (
  SELECT ST_GeogFromText('GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(1 2, 2 1))') AS geography)
SELECT
  geography AS original_geography,
  ST_DUMP(geography, 1) AS dumped_geographies
FROM example

+-------------------------------------+------------------------------+
|         original_geographies        |      dumped_geographies      |
+-------------------------------------+------------------------------+
| GEOMETRYCOLLECTION(POINT(0 0),      | [LINESTRING(1 2, 2 1)]       |
|   LINESTRING(1 2, 2 1))             |                              |
+-------------------------------------+------------------------------+

ST_DWITHIN

ST_DWITHIN(geography_1, geography_2, distance[, use_spheroid])

Description

Returns TRUE if the distance between at least one point in geography_1 and one point in geography_2 is less than or equal to the distance given by the distance argument; otherwise, returns FALSE. If either input GEOGRAPHY is empty, ST_DWithin returns FALSE. The given distance is in meters on the surface of the Earth.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

BOOL

ST_ENDPOINT

ST_ENDPOINT(linestring_geography)

Description

Returns the last point of a linestring geography as a point geography. Returns an error if the input is not a linestring or if the input is empty. Use the SAFE prefix to obtain NULL for invalid input instead of an error.

Return Type

Point GEOGRAPHY

Example

SELECT ST_EndPoint(ST_GeogFromText('linestring(1 1, 2 1, 3 2, 3 3)')) last

+--------------+
| last         |
+--------------+
| POINT(3 3)   |
+--------------+

ST_EQUALS

ST_EQUALS(geography_1, geography_2)

Description

Returns TRUE if geography_1 and geography_2 represent the same

GEOGRAPHY value. More precisely, this means that one of the following conditions holds: + ST_COVERS(geography_1, geography_2) = TRUE and ST_COVERS(geography_2, geography_1) = TRUE + Both geography_1 and geography_2 are empty.

Therefore, two GEOGRAPHYs may be equal even if the ordering of points or vertices differ, as long as they still represent the same geometric structure.

Constraints

ST_EQUALS is not guaranteed to be a transitive function.

Return type

BOOL

ST_EXTENT

ST_EXTENT(geography_expression)

Description

Returns a STRUCT that represents the bounding box for the set of input GEOGRAPHY values. The bounding box is the minimal rectangle that encloses the geography. The edges of the rectangle follow constant lines of longitude and latitude.

Caveats:

  • Returns NULL if all the inputs are NULL or empty geographies.
  • The bounding box might cross the antimeridian if this allows for a smaller rectangle. In this case, the bounding box has one of its longitudinal bounds outside of the [-180, 180] range, so that xmin is smaller than the eastmost value xmax.
  • If the longitude span of the bounding box is larger than or equal to 180 degrees, the function returns the bounding box with the longitude range of [-180, 180].

Return type

STRUCT<xmin FLOAT64, ymin FLOAT64, xmax FLOAT64, ymax FLOAT64>.

Bounding box parts:

  • xmin: The westmost constant longitude line that bounds the rectangle.
  • xmax: The eastmost constant longitude line that bounds the rectangle.
  • ymin: The minimum constant latitude line that bounds the rectangle.
  • ymax: The maximum constant latitude line that bounds the rectangle.

Example

WITH data AS (
  SELECT 1 id, st_geogfromtext('polygon((-125 48, -124 46, -117 46, -117 49, -125 48))') g
  UNION ALL
  SELECT 2 id, st_geogfromtext('polygon((172 53, -130 55, -141 70, 172 53))') g
  UNION ALL
  SELECT 3 id, st_geogfromtext('point empty') g
)
SELECT st_extent(g) AS box
FROM data

+----------------------------------------------+
| box                                          |
+----------------------------------------------+
| {xmin:172, ymin:46, xmax:243, ymax:70}       |
+----------------------------------------------+

See ST_BOUNDINGBOX for the non-aggregate version of ST_EXTENT.

ST_EXTERIORRING

ST_EXTERIORRING(polygon_geography)

Description

Returns a linestring geography that corresponds to the outermost ring of a polygon geography.

  • If the input geography is a polygon, gets the outermost ring of the polygon geography and returns the corresponding linestring.
  • If the input is the full GEOGRAPHY, returns an empty geography.
  • Returns an error if the input is not a single polygon.

Use the SAFE prefix to return NULL for invalid input instead of an error.

Return type

  • Linestring GEOGRAPHY
  • Empty GEOGRAPHY

Examples

WITH geo as
 (SELECT ST_GEOGFROMTEXT('POLYGON((0 0, 1 4, 2 2, 0 0))') AS g UNION ALL
  SELECT ST_GEOGFROMTEXT('''POLYGON((1 1, 1 10, 5 10, 5 1, 1 1),
                                  (2 2, 3 4, 2 4, 2 2))''') as g)
SELECT ST_EXTERIORRING(g) AS ring FROM geo;

+---------------------------------------+
| ring                                  |
+---------------------------------------+
| LINESTRING(2 2, 1 4, 0 0, 2 2)        |
| LINESTRING(5 1, 5 10, 1 10, 1 1, 5 1) |
+---------------------------------------+

ST_GEOGFROM

ST_GEOGFROM(expression)

Description

Converts an expression for a STRING or BYTES value into a GEOGRAPHY value.

If expression represents a STRING value, it must be a valid GEOGRAPHY representation in one of the following formats:

  • WKT format. To learn more about this format and the requirements to use it, see ST_GEOGFROMTEXT.
  • WKB in hexadecimal text format. To learn more about this format and the requirements to use it, see ST_GEOGFROMWKB.
  • GeoJSON format. To learn more about this format and the requirements to use it, see ST_GEOGFROMGEOJSON.

If expression represents a BYTES value, it must be a valid GEOGRAPHY binary expression in WKB format. To learn more about this format and the requirements to use it, see ST_GEOGFROMWKB.

If expression is NULL, the output is NULL.

Return type

GEOGRAPHY

Examples

This takes a WKT-formatted string and returns a GEOGRAPHY polygon:

SELECT ST_GEOGFROM('Polygon((0 0, 0 2, 2 2, 2 0, 0 0))') AS WKT_format

+------------------------------------+
| WKT_format                         |
+------------------------------------+
| POLYGON((2 0, 2 2, 0 2, 0 0, 2 0)) |
+------------------------------------+

This takes a WKB-formatted hexadecimal-encoded string and returns a GEOGRAPHY point:

SELECT ST_GEOGFROM(FROM_HEX('010100000000000000000000400000000000001040')) AS WKB_format

+----------------+
| WKB_format     |
+----------------+
| POINT(2 4)     |
+----------------+

This takes WKB-formatted bytes and returns a GEOGRAPHY point:

SELECT ST_GEOGFROM('010100000000000000000000400000000000001040')-AS WKB_format

+----------------+
| WKB_format     |
+----------------+
| POINT(2 4)     |
+----------------+

This takes a GEOJSON-formatted string and returns a GEOGRAPHY polygon:

SELECT ST_GEOGFROM(
  '{ "type": "Polygon", "coordinates": [ [ [2, 0], [2, 2], [1, 2], [0, 2], [0, 0], [2, 0] ] ] }'
) AS GEOJSON_format

+-----------------------------------------+
| GEOJSON_format                          |
+-----------------------------------------+
| POLYGON((2 0, 2 2, 1 2, 0 2, 0 0, 2 0)) |
+-----------------------------------------+

ST_GEOGFROMGEOJSON

ST_GEOGFROMGEOJSON(geojson_string [, make_valid => constant_expression])

Description

Returns a GEOGRAPHY value that corresponds to the input GeoJSON representation.

ST_GEOGFROMGEOJSON accepts input that is RFC 7946 compliant.

If the parameter make_valid is set to TRUE, the function attempts to repair polygons that don't conform to Open Geospatial Consortium semantics. This parameter uses named argument syntax, and should be specified using make_valid => argument_value syntax.

A BigQuery GEOGRAPHY has spherical geodesic edges, whereas a GeoJSON Geometry object explicitly has planar edges. To convert between these two types of edges, BigQuery adds additional points to the line where necessary so that the resulting sequence of edges remains within 10 meters of the original edge.

See ST_ASGEOJSON to format a GEOGRAPHY as GeoJSON.

Constraints

The input is subject to the following constraints:

  • ST_GEOGFROMGEOJSON only accepts JSON geometry fragments and cannot be used to ingest a whole JSON document.
  • The input JSON fragment must consist of a GeoJSON geometry type, which includes Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon, and GeometryCollection. Any other GeoJSON type such as Feature or FeatureCollection will result in an error.
  • A position in the coordinates member of a GeoJSON geometry type must consist of exactly two elements. The first is the longitude and the second is the latitude. Therefore, ST_GEOGFROMGEOJSON does not support the optional third element for a position in the coordinates member.

Return type

GEOGRAPHY

ST_GEOGFROMTEXT

  • Signature 1
  • Signature 2

Signature 1

ST_GEOGFROMTEXT(wkt_string[, oriented])

Description

Returns a GEOGRAPHY value that corresponds to the input WKT representation.

This function supports an optional parameter of type BOOL, oriented. If this parameter is set to TRUE, any polygons in the input are assumed to be oriented as follows: if someone walks along the boundary of the polygon in the order of the input vertices, the interior of the polygon is on the left. This allows WKT to represent polygons larger than a hemisphere. If oriented is FALSE or omitted, this function returns the polygon with the smaller area. See also ST_MAKEPOLYGONORIENTED which is similar to ST_GEOGFROMTEXT with oriented=TRUE.

To format GEOGRAPHY as WKT, use ST_ASTEXT.

Constraints

  • All input edges are assumed to be spherical geodesics, and not planar straight lines. For reading data in a planar projection, consider using ST_GEOGFROMGEOJSON. For more information on the differences between spherical geodesics and planar lines, see Coordinate systems and edges.
  • The function does not support three-dimensional geometries that have a Z suffix, nor does it support linear referencing system geometries with an M suffix.
  • The function only supports geometry primitives and multipart geometries. In particular it supports only Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon, and GeometryCollection.

Return type

GEOGRAPHY

Example

The following query reads the WKT string POLYGON((0 0, 0 2, 2 2, 2 0, 0 0)) both as a non-oriented polygon and as an oriented polygon, and checks whether each result contains the point (1, 1).

WITH polygon AS (SELECT 'Polygon((0 0, 0 2, 2 2, 2 0, 0 0))' AS p)
SELECT
  ST_CONTAINS(ST_GEOGFROMTEXT(p), ST_GEOGPOINT(1, 1)) AS fromtext_default,
  ST_CONTAINS(ST_GEOGFROMTEXT(p, FALSE), ST_GEOGPOINT(1, 1)) AS non_oriented,
  ST_CONTAINS(ST_GEOGFROMTEXT(p, TRUE),  ST_GEOGPOINT(1, 1)) AS oriented
FROM polygon;

+-------------------+---------------+-----------+
| fromtext_default  | non_oriented  | oriented  |
+-------------------+---------------+-----------+
| true              | true          | false     |
+-------------------+---------------+-----------+

Signature 2

ST_GEOGFROMTEXT(wkt_string[, oriented => boolean_constant_1]
    [, planar => boolean_constant_2] [, make_valid => boolean_constant_3])

Description

Returns a GEOGRAPHY value that corresponds to the input WKT representation.

This function supports three optional parameters of type BOOL: oriented, planar, and make_valid. This signature uses named arguments syntax, and the parameters should be specified using parameter_name => parameter_value syntax, in any order.

If the oriented parameter is set to TRUE, any polygons in the input are assumed to be oriented as follows: if someone walks along the boundary of the polygon in the order of the input vertices, the interior of the polygon is on the left. This allows WKT to represent polygons larger than a hemisphere. If oriented is FALSE or omitted, this function returns the polygon with the smaller area. See also ST_MAKEPOLYGONORIENTED which is similar to ST_GEOGFROMTEXT with oriented=TRUE.

If the parameter planar is set to TRUE, the edges of the line strings and polygons are assumed to use planar map semantics, rather than BigQuery default spherical geodesics semantics. For more information on the differences between spherical geodesics and planar lines, see Coordinate systems and edges.

If the parameter make_valid is set to TRUE, the function attempts to repair polygons that don't conform to Open Geospatial Consortium semantics.

To format GEOGRAPHY as WKT, use ST_ASTEXT.

Constraints

  • All input edges are assumed to be spherical geodesics by default, and not planar straight lines. For reading data in a planar projection, pass planar => TRUE argument, or consider using ST_GEOGFROMGEOJSON. For more information on the differences between spherical geodesics and planar lines, see Coordinate systems and edges.
  • The function does not support three-dimensional geometries that have a Z suffix, nor does it support linear referencing system geometries with an M suffix.
  • The function only supports geometry primitives and multipart geometries. In particular it supports only Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon, and GeometryCollection.
  • oriented and planar cannot be equal to TRUE at the same time.
  • oriented and make_valid cannot be equal to TRUE at the same time.

Example

The following query reads the WKT string POLYGON((0 0, 0 2, 2 2, 0 2, 0 0)) both as a non-oriented polygon and as an oriented polygon, and checks whether each result contains the point (1, 1).

WITH polygon AS (SELECT 'Polygon((0 0, 0 2, 2 2, 2 0, 0 0))' AS p)
SELECT
  ST_CONTAINS(ST_GEOGFROMTEXT(p), ST_GEOGPOINT(1, 1)) AS fromtext_default,
  ST_CONTAINS(ST_GEOGFROMTEXT(p, oriented => FALSE), ST_GEOGPOINT(1, 1)) AS non_oriented,
  ST_CONTAINS(ST_GEOGFROMTEXT(p, oriented => TRUE),  ST_GEOGPOINT(1, 1)) AS oriented
FROM polygon;

+-------------------+---------------+-----------+
| fromtext_default  | non_oriented  | oriented  |
+-------------------+---------------+-----------+
| true              | true          | false     |
+-------------------+---------------+-----------+

The following query converts a WKT string with an invalid polygon to GEOGRAPHY. The WKT string violates two properties of a valid polygon - the loop describing the polygon is not closed, and it contains self-intersection. With the make_valid option, ST_GeogFromText successfully converts it to a multipolygon shape.

WITH data AS (
  SELECT 'polygon((0 -1, 2 1, 2 -1, 0 1))' wkt)
SELECT
  SAFE.ST_GeogFromText(wkt) as geom,
  SAFE.ST_GeogFromText(wkt, make_valid => TRUE) as valid_geom
FROM data

+------+-----------------------------------------------------------------+
| geom | valid_geom                                                      |
+------+-----------------------------------------------------------------+
| NULL | MULTIPOLYGON(((0 -1, 1 0, 0 1, 0 -1)), ((1 0, 2 -1, 2 1, 1 0))) |
+------+-----------------------------------------------------------------+

ST_GEOGFROMWKB

ST_GEOGFROMWKB(wkb_bytes_expression)
ST_GEOGFROMWKB(wkb_hex_string_expression)

Description

Converts an expression for a hexadecimal-text STRING or BYTES value into a GEOGRAPHY value. The expression must be in WKB format.

To format GEOGRAPHY as WKB, use ST_ASBINARY.

Constraints

All input edges are assumed to be spherical geodesics, and not planar straight lines. For reading data in a planar projection, consider using ST_GEOGFROMGEOJSON.

Return type

GEOGRAPHY

ST_GEOGPOINT

ST_GEOGPOINT(longitude, latitude)

Description

Creates a GEOGRAPHY with a single point. ST_GEOGPOINT creates a point from the specified FLOAT64 longitude and latitude parameters and returns that point in a GEOGRAPHY value.

Constraints

  • Latitudes must be in the range [-90, 90]. Latitudes outside this range will result in an error.
  • Longitudes outside the range [-180, 180] are allowed; ST_GEOGPOINT uses the input longitude modulo 360 to obtain a longitude within [-180, 180].

Return type

GEOGRAPHY

ST_GEOGPOINTFROMGEOHASH

ST_GEOGPOINTFROMGEOHASH(geohash)

Description

Returns a GEOGRAPHY value that corresponds to a point in the middle of a bounding box defined in the GeoHash.

Return type

GEOGRAPHY

ST_GEOHASH

ST_GEOHASH(geography_expression[, maxchars])

Description

Takes a single-point GEOGRAPHY and returns a GeoHash representation of that GEOGRAPHY object.

  • geography_expression: Represents a GEOGRAPHY object. Only a GEOGRAPHY object that represents a single point is supported. If ST_GEOHASH is used over an empty GEOGRAPHY object, returns NULL.
  • maxchars: This optional INT64 parameter specifies the maximum number of characters the hash will contain. Fewer characters corresponds to lower precision (or, described differently, to a bigger bounding box). maxchars defaults to 20 if not explicitly specified. A valid maxchars value is 1 to 20. Any value below or above is considered unspecified and the default of 20 is used.

Return type

STRING

Example

Returns a GeoHash of the Seattle Center with 10 characters of precision.

SELECT ST_GEOHASH(ST_GEOGPOINT(-122.35, 47.62), 10) geohash

+--------------+
| geohash      |
+--------------+
| c22yzugqw7   |
+--------------+

ST_GEOMETRYTYPE

ST_GEOMETRYTYPE(geography_expression)

Description

Returns the Open Geospatial Consortium (OGC) geometry type that describes the input GEOGRAPHY as a STRING. The OGC geometry type matches the types that are used in WKT and GeoJSON formats and printed for ST_ASTEXT and ST_ASGEOJSON. ST_GEOMETRYTYPE returns the OGC geometry type with the "ST_" prefix.

ST_GEOMETRYTYPE returns the following given the type on the input:

  • Single point geography: Returns ST_Point.
  • Collection of only points: Returns ST_MultiPoint.
  • Single linestring geography: Returns ST_LineString.
  • Collection of only linestrings: Returns ST_MultiLineString.
  • Single polygon geography: Returns ST_Polygon.
  • Collection of only polygons: Returns ST_MultiPolygon.
  • Collection with elements of different dimensions, or the input is the empty geography: Returns ST_GeometryCollection.

Return type

STRING

Example

The following example shows how ST_GEOMETRYTYPE takes geographies and returns the names of their OGC geometry types.

WITH example AS(
  SELECT ST_GeogFromText('POINT(0 1)') AS geography
  UNION ALL
  SELECT ST_GeogFromText('MULTILINESTRING((2 2, 3 4), (5 6, 7 7))')
  UNION ALL
  SELECT ST_GeogFromText('GEOMETRYCOLLECTION(MULTIPOINT(-1 2, 0 12), LINESTRING(-2 4, 0 6))')
  UNION ALL
  SELECT ST_GeogFromText('GEOMETRYCOLLECTION EMPTY'))
SELECT
  geography AS WKT,
  ST_GeometryType(geography) AS geometry_type_name
FROM example;

+-------------------------------------------------------------------+-----------------------+
| WKT                                                               | geometry_type_name    |
+-------------------------------------------------------------------+-----------------------+
| POINT(0 1)                                                        | ST_Point              |
| MULTILINESTRING((2 2, 3 4), (5 6, 7 7))                           | ST_MultiLineString    |
| GEOMETRYCOLLECTION(MULTIPOINT(-1 2, 0 12), LINESTRING(-2 4, 0 6)) | ST_GeometryCollection |
| GEOMETRYCOLLECTION EMPTY                                          | ST_GeometryCollection |
+-------------------------------------------------------------------+-----------------------+

ST_INTERIORRINGS

ST_INTERIORRINGS(polygon_geography)

Description

Returns an array of linestring geographies that corresponds to the interior rings of a polygon geography. Each interior ring is the border of a hole within the input polygon.

  • If the input geography is a polygon, excludes the outermost ring of the polygon geography and returns the linestrings corresponding to the interior rings.
  • If the input is the full GEOGRAPHY, returns an empty array.
  • If the input polygon has no holes, returns an empty array.
  • Returns an error if the input is not a single polygon.

Use the SAFE prefix to return NULL for invalid input instead of an error.

Return type

ARRAY

Examples

WITH geo AS (
  SELECT ST_GEOGFROMTEXT('polygon((0 0, 1 1, 1 2, 0 0))') AS g UNION ALL
  SELECT ST_GEOGFROMTEXT('polygon((1 1, 1 10, 5 10, 5 1, 1 1), (2 2, 3 4, 2 4, 2 2))') UNION ALL
  SELECT ST_GEOGFROMTEXT('polygon((1 1, 1 10, 5 10, 5 1, 1 1), (2 2.5, 3.5 3, 2.5 2, 2 2.5), (3.5 7, 4 6, 3 3, 3.5 7))') UNION ALL
  SELECT ST_GEOGFROMTEXT('fullglobe') UNION ALL
  SELECT null)
SELECT ST_INTERIORRINGS(g) AS rings FROM geo;

+----------------------------------------------------------------------------+
| rings                                                                      |
+----------------------------------------------------------------------------+
| []                                                                         |
| [LINESTRING(2 2, 3 4, 2 4, 2 2)]                                           |
| [LINESTRING(2.5 2, 3.5 3, 2 2.5, 2.5 2), LINESTRING(3 3, 4 6, 3.5 7, 3 3)] |
| []                                                                         |
| NULL                                                                       |
+----------------------------------------------------------------------------+

ST_INTERSECTION

ST_INTERSECTION(geography_1, geography_2)

Description

Returns a GEOGRAPHY that represents the point set intersection of the two input GEOGRAPHYs. Thus, every point in the intersection appears in both geography_1 and geography_2.

If the two input GEOGRAPHYs are disjoint, that is, there are no points that appear in both input geometry_1 and geometry_2, then an empty GEOGRAPHY is returned.

See ST_INTERSECTS, ST_DISJOINT for related predicate functions.

Return type

GEOGRAPHY

ST_INTERSECTS

ST_INTERSECTS(geography_1, geography_2)

Description

Returns TRUE if the point set intersection of geography_1 and geography_2 is non-empty. Thus, this function returns TRUE if there is at least one point that appears in both input GEOGRAPHYs.

If ST_INTERSECTS returns TRUE, it implies that ST_DISJOINT returns FALSE.

Return type

BOOL

ST_INTERSECTSBOX

ST_INTERSECTSBOX(geography, lng1, lat1, lng2, lat2)

Description

Returns TRUE if geography intersects the rectangle between [lng1, lng2] and [lat1, lat2]. The edges of the rectangle follow constant lines of longitude and latitude. lng1 and lng2 specify the westmost and eastmost constant longitude lines that bound the rectangle, and lat1 and lat2 specify the minimum and maximum constant latitude lines that bound the rectangle.

Specify all longitude and latitude arguments in degrees.

Constraints

The input arguments are subject to the following constraints:

  • Latitudes should be in the [-90, 90] degree range.
  • Longitudes should follow either of the following rules:
    • Both longitudes are in the [-180, 180] degree range.
    • One of the longitudes is in the [-180, 180] degree range, and lng2 - lng1 is in the [0, 360] interval.

Return type

BOOL

Example

SELECT p, st_intersectsbox(p, -90, 0, 90, 20) AS box1,
       st_intersectsbox(p, 90, 0, -90, 20) AS box2
FROM UNNEST([st_geogpoint(10, 10), st_geogpoint(170, 10),
             st_geogpoint(30, 30)]) p
+----------------+--------------+--------------+
| p              | box1         | box2         |
+----------------+--------------+--------------+
| POINT(10 10)   | true         | false        |
+----------------+--------------+--------------+
| POINT(170 10)  | false        | true         |
+----------------+--------------+--------------+
| POINT(30 30)   | false        | false        |
+----------------+--------------+--------------+

ST_ISCOLLECTION

ST_ISCOLLECTION(geography_expression)

Description

Returns TRUE if the total number of points, linestrings, and polygons is greater than one.

An empty GEOGRAPHY is not a collection.

Return type

BOOL

ST_ISEMPTY

ST_ISEMPTY(geography_expression)

Description

Returns TRUE if the given GEOGRAPHY is empty; that is, the GEOGRAPHY does not contain any points, lines, or polygons.

NOTE: A BigQuery empty GEOGRAPHY is not associated with a particular geometry shape. For example, the results of expressions ST_GEOGFROMTEXT('POINT EMPTY') and ST_GEOGFROMTEXT('GEOMETRYCOLLECTION EMPTY') are identical.

Return type

BOOL

ST_LENGTH

ST_LENGTH(geography_expression[, use_spheroid])

Description

Returns the total length in meters of the lines in the input GEOGRAPHY.

If geography_expression is a point or a polygon, returns zero. If geography_expression is a collection, returns the length of the lines in the collection; if the collection does not contain lines, returns zero.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

FLOAT64

ST_MAKELINE

ST_MAKELINE(geography_1, geography_2)
ST_MAKELINE(array_of_geography)

Description

Creates a GEOGRAPHY with a single linestring by concatenating the point or line vertices of each of the input GEOGRAPHYs in the order they are given.

ST_MAKELINE comes in two variants. For the first variant, input must be two GEOGRAPHYs. For the second, input must be an ARRAY of type GEOGRAPHY. In either variant, each input GEOGRAPHY must consist of one of the following values:

  • Exactly one point.
  • Exactly one linestring.

For the first variant of ST_MAKELINE, if either input GEOGRAPHY is NULL, ST_MAKELINE returns NULL. For the second variant, if input ARRAY or any element in the input ARRAY is NULL, ST_MAKELINE returns NULL.

Constraints

Every edge must span strictly less than 180 degrees.

NOTE: BigQuery's snapping process may discard sufficiently short edges and snap the two endpoints together. For instance, if two input GEOGRAPHYs each contain a point and the two points are separated by a distance less than the snap radius, the points will be snapped together. In such a case the result will be a GEOGRAPHY with exactly one point.

Return type

GEOGRAPHY

ST_MAKEPOLYGON

ST_MAKEPOLYGON(geography_expression[, array_of_geography])

Description

Creates a GEOGRAPHY containing a single polygon from linestring inputs, where each input linestring is used to construct a polygon ring.

ST_MAKEPOLYGON comes in two variants. For the first variant, the input linestring is provided by a single GEOGRAPHY containing exactly one linestring. For the second variant, the input consists of a single GEOGRAPHY and an array of GEOGRAPHYs, each containing exactly one linestring. The first GEOGRAPHY in either variant is used to construct the polygon shell. Additional GEOGRAPHYs provided in the input ARRAY specify a polygon hole. For every input GEOGRAPHY containing exactly one linestring, the following must be true:

  • The linestring must consist of at least three distinct vertices.
  • The linestring must be closed: that is, the first and last vertex have to be the same. If the first and last vertex differ, the function constructs a final edge from the first vertex to the last.

For the first variant of ST_MAKEPOLYGON, if either input GEOGRAPHY is NULL, ST_MAKEPOLYGON returns NULL. For the second variant, if input ARRAY or any element in the ARRAY is NULL, ST_MAKEPOLYGON returns NULL.

NOTE: ST_MAKEPOLYGON accepts an empty GEOGRAPHY as input. ST_MAKEPOLYGON interprets an empty GEOGRAPHY as having an empty linestring, which will create a full loop: that is, a polygon that covers the entire Earth.

Constraints

Together, the input rings must form a valid polygon:

  • The polygon shell must cover each of the polygon holes.
  • There can be only one polygon shell (which has to be the first input ring). This implies that polygon holes cannot be nested.
  • Polygon rings may only intersect in a vertex on the boundary of both rings.

Every edge must span strictly less than 180 degrees.

Each polygon ring divides the sphere into two regions. The first input linesting to ST_MAKEPOLYGON forms the polygon shell, and the interior is chosen to be the smaller of the two regions. Each subsequent input linestring specifies a polygon hole, so the interior of the polygon is already well-defined. In order to define a polygon shell such that the interior of the polygon is the larger of the two regions, see ST_MAKEPOLYGONORIENTED.

NOTE: BigQuery's snapping process may discard sufficiently short edges and snap the two endpoints together. Hence, when vertices are snapped together, it is possible that a polygon hole that is sufficiently small may disappear, or the output GEOGRAPHY may contain only a line or a point.

Return type

GEOGRAPHY

ST_MAKEPOLYGONORIENTED

ST_MAKEPOLYGONORIENTED(array_of_geography)

Description

Like ST_MAKEPOLYGON, but the vertex ordering of each input linestring determines the orientation of each polygon ring. The orientation of a polygon ring defines the interior of the polygon as follows: if someone walks along the boundary of the polygon in the order of the input vertices, the interior of the polygon is on the left. This applies for each polygon ring provided.

This variant of the polygon constructor is more flexible since ST_MAKEPOLYGONORIENTED can construct a polygon such that the interior is on either side of the polygon ring. However, proper orientation of polygon rings is critical in order to construct the desired polygon.

If the input ARRAY or any element in the ARRAY is NULL, ST_MAKEPOLYGONORIENTED returns NULL.

NOTE: The input argument for ST_MAKEPOLYGONORIENTED may contain an empty GEOGRAPHY. ST_MAKEPOLYGONORIENTED interprets an empty GEOGRAPHY as having an empty linestring, which will create a full loop: that is, a polygon that covers the entire Earth.

Constraints

Together, the input rings must form a valid polygon:

  • The polygon shell must cover each of the polygon holes.
  • There must be only one polygon shell, which must to be the first input ring. This implies that polygon holes cannot be nested.
  • Polygon rings may only intersect in a vertex on the boundary of both rings.

Every edge must span strictly less than 180 degrees.

ST_MAKEPOLYGONORIENTED relies on the ordering of the input vertices of each linestring to determine the orientation of the polygon. This applies to the polygon shell and any polygon holes. ST_MAKEPOLYGONORIENTED expects all polygon holes to have the opposite orientation of the shell. See ST_MAKEPOLYGON for an alternate polygon constructor, and other constraints on building a valid polygon.

NOTE: Due to BigQuery's snapping process, edges with a sufficiently short length will be discarded and the two endpoints will be snapped to a single point. Therefore, it is possible that vertices in a linestring may be snapped together such that one or more edge disappears. Hence, it is possible that a polygon hole that is sufficiently small may disappear, or the resulting GEOGRAPHY may contain only a line or a point.

Return type

GEOGRAPHY

ST_MAXDISTANCE

ST_MAXDISTANCE(geography_1, geography_2[, use_spheroid])

Returns the longest distance in meters between two non-empty GEOGRAPHYs; that is, the distance between two vertices where the first vertex is in the first GEOGRAPHY, and the second vertex is in the second GEOGRAPHY. If geography_1 and geography_2 are the same GEOGRAPHY, the function returns the distance between the two most distant vertices in that GEOGRAPHY.

If either of the input GEOGRAPHYs is empty, ST_MAXDISTANCE returns NULL.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

FLOAT64

ST_NPOINTS

ST_NPOINTS(geography_expression)

Description

An alias of ST_NUMPOINTS.

ST_NUMGEOMETRIES

ST_NUMGEOMETRIES(geography_expression)

Description

Returns the number of geometries in the input GEOGRAPHY. For a single point, linestring, or polygon, ST_NUMGEOMETRIES returns 1. For any collection of geometries, ST_NUMGEOMETRIES returns the number of geometries making up the collection. ST_NUMGEOMETRIES returns 0 if the input is the empty GEOGRAPHY.

Return type

INT64

Example

The following example computes ST_NUMGEOMETRIES for a single point geography, two collections, and an empty geography.

WITH example AS(
  SELECT ST_GeogFromText('POINT(5 0)') AS geography
  UNION ALL
  SELECT ST_GeogFromText('MULTIPOINT(0 1, 4 3, 2 6)') AS geography
  UNION ALL
  SELECT ST_GeogFromText('GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(1 2, 2 1))') AS geography
  UNION ALL
  SELECT ST_GeogFromText('GEOMETRYCOLLECTION EMPTY'))
SELECT
  geography,
  ST_NumGeometries(geography) AS num_geometries,
FROM example;

+------------------------------------------------------+----------------+
| geography                                            | num_geometries |
+------------------------------------------------------+----------------+
| POINT(5 0)                                           | 1              |
| MULTIPOINT(0 1, 4 3, 2 6)                            | 3              |
| GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(1 2, 2 1)) | 2              |
| GEOMETRYCOLLECTION EMPTY                             | 0              |
+------------------------------------------------------+----------------+

ST_NUMPOINTS

ST_NUMPOINTS(geography_expression)

Description

Returns the number of vertices in the input GEOGRAPHY. This includes the number of points, the number of linestring vertices, and the number of polygon vertices.

NOTE: The first and last vertex of a polygon ring are counted as distinct vertices.

Return type

INT64

ST_PERIMETER

ST_PERIMETER(geography_expression[, use_spheroid])

Description

Returns the length in meters of the boundary of the polygons in the input GEOGRAPHY.

If geography_expression is a point or a line, returns zero. If geography_expression is a collection, returns the perimeter of the polygons in the collection; if the collection does not contain polygons, returns zero.

The optional use_spheroid parameter determines how this function measures distance. If use_spheroid is FALSE, the function measures distance on the surface of a perfect sphere.

The use_spheroid parameter currently only supports the value FALSE. The default value of use_spheroid is FALSE.

Return type

FLOAT64

ST_POINTN

ST_POINTN(linestring_geography, index)

Description

Returns the Nth point of a linestring geography as a point geography, where N is the index. The index is 1-based. Negative values are counted backwards from the end of the linestring, so that -1 is the last point. Returns an error if the input is not a linestring, if the input is empty, or if there is no vertex at the given index. Use the SAFE prefix to obtain NULL for invalid input instead of an error.

Return Type

Point GEOGRAPHY

Example

The following example uses ST_POINTN, ST_STARTPOINT and ST_ENDPOINT to extract points from a linestring.

WITH linestring AS (
    SELECT ST_GeogFromText('linestring(1 1, 2 1, 3 2, 3 3)') g
)
SELECT ST_PointN(g, 1) AS first, ST_PointN(g, -1) AS last,
    ST_PointN(g, 2) AS second, ST_PointN(g, -2) AS second_to_last
FROM linestring;

+--------------+--------------+--------------+----------------+
| first        | last         | second       | second_to_last |
+--------------+--------------+--------------+----------------+
| POINT(1 1)   | POINT(3 3)   | POINT(2 1)   | POINT(3 2)     |
+--------------+--------------+--------------+----------------+

ST_SIMPLIFY

ST_SIMPLIFY(geography, tolerance_meters)

Description

Returns a simplified version of geography, the given input GEOGRAPHY. The input GEOGRAPHY is simplified by replacing nearly straight chains of short edges with a single long edge. The input geography will not change by more than the tolerance specified by tolerance_meters. Thus, simplified edges are guaranteed to pass within tolerance_meters of the original positions of all vertices that were removed from that edge. The given tolerance_meters is in meters on the surface of the Earth.

Note that ST_SIMPLIFY preserves topological relationships, which means that no new crossing edges will be created and the output will be valid. For a large enough tolerance, adjacent shapes may collapse into a single object, or a shape could be simplified to a shape with a smaller dimension.

Constraints

For ST_SIMPLIFY to have any effect, tolerance_meters must be non-zero.

ST_SIMPLIFY returns an error if the tolerance specified by tolerance_meters is one of the following:

  • A negative tolerance.
  • Greater than ~7800 kilometers.

Return type

GEOGRAPHY

Examples

The following example shows how ST_SIMPLIFY simplifies the input line GEOGRAPHY by removing intermediate vertices.

WITH example AS
 (SELECT ST_GEOGFROMTEXT('LINESTRING(0 0, 0.05 0, 0.1 0, 0.15 0, 2 0)') AS line)
SELECT
   line AS original_line,
   ST_SIMPLIFY(line, 1) AS simplified_line
FROM example;

+---------------------------------------------+----------------------+
|                original_line                |   simplified_line    |
+---------------------------------------------+----------------------+
| LINESTRING(0 0, 0.05 0, 0.1 0, 0.15 0, 2 0) | LINESTRING(0 0, 2 0) |
+---------------------------------------------+----------------------+

The following example illustrates how the result of ST_SIMPLIFY can have a lower dimension than the original shape.

WITH example AS
 (SELECT
    ST_GEOGFROMTEXT('POLYGON((0 0, 0.1 0, 0.1 0.1, 0 0))') AS polygon,
    t AS tolerance
  FROM UNNEST([1000, 10000, 100000]) AS t)
SELECT
  polygon AS original_triangle,
  tolerance AS tolerance_meters,
  ST_SIMPLIFY(polygon, tolerance) AS simplified_result
FROM example

+-------------------------------------+------------------+-------------------------------------+
|          original_triangle          | tolerance_meters |          simplified_result          |
+-------------------------------------+------------------+-------------------------------------+
| POLYGON((0 0, 0.1 0, 0.1 0.1, 0 0)) |             1000 | POLYGON((0 0, 0.1 0, 0.1 0.1, 0 0)) |
| POLYGON((0 0, 0.1 0, 0.1 0.1, 0 0)) |            10000 |            LINESTRING(0 0, 0.1 0.1) |
| POLYGON((0 0, 0.1 0, 0.1 0.1, 0 0)) |           100000 |                          POINT(0 0) |
+-------------------------------------+------------------+-------------------------------------+

ST_SNAPTOGRID

ST_SNAPTOGRID(geography_expression, grid_size)

Description

Returns the input GEOGRAPHY, where each vertex has been snapped to a longitude/latitude grid. The grid size is determined by the grid_size parameter which is given in degrees.

Constraints

Arbitrary grid sizes are not supported. The grid_size parameter is rounded so that it is of the form 10^n, where -10 < n < 0.

Return type

GEOGRAPHY

ST_STARTPOINT

ST_STARTPOINT(linestring_geography)

Description

Returns the first point of a linestring geography as a point geography. Returns an error if the input is not a linestring or if the input is empty. Use the SAFE prefix to obtain NULL for invalid input instead of an error.

Return Type

Point GEOGRAPHY

Example

SELECT ST_StartPoint(ST_GeogFromText('linestring(1 1, 2 1, 3 2, 3 3)')) first

+--------------+
| first        |
+--------------+
| POINT(1 1)   |
+--------------+

ST_TOUCHES

ST_TOUCHES(geography_1, geography_2)

Description

Returns TRUE provided the following two conditions are satisfied:

  1. geography_1 intersects geography_2.
  2. The interior of geography_1 and the interior of geography_2 are disjoint.

Return type

BOOL

ST_UNION

ST_UNION(geography_1, geography_2)
ST_UNION(array_of_geography)

Description

Returns a GEOGRAPHY that represents the point set union of all input GEOGRAPHYs.

ST_UNION comes in two variants. For the first variant, input must be two GEOGRAPHYs. For the second, the input is an ARRAY of type GEOGRAPHY.

For the first variant of ST_UNION, if an input GEOGRAPHY is NULL, ST_UNION returns NULL. For the second variant, if the input ARRAY value is NULL, ST_UNION returns NULL. For a non-NULL input ARRAY, the union is computed and NULL elements are ignored so that they do not affect the output.

See ST_UNION_AGG for the aggregate version of ST_UNION.

Return type

GEOGRAPHY

ST_UNION_AGG

ST_UNION_AGG(geography)

Description

Returns a GEOGRAPHY that represents the point set union of all input GEOGRAPHYs.

ST_UNION_AGG ignores NULL input GEOGRAPHY values.

See ST_UNION for the non-aggregate version of ST_UNION_AGG.

Return type

GEOGRAPHY

ST_WITHIN

ST_WITHIN(geography_1, geography_2)

Description

Returns TRUE if no point of geography_1 is outside of geography_2 and the interiors of geography_1 and geography_2 intersect.

Given two geographies a and b, ST_WITHIN(a, b) returns the same result as ST_CONTAINS(b, a). Note the opposite order of arguments.

Return type

BOOL

ST_X

ST_X(geography_expression)

Description

Returns the longitude in degrees of the single-point input GEOGRAPHY.

For any input GEOGRAPHY that is not a single point, including an empty GEOGRAPHY, ST_X returns an error. Use the SAFE. prefix to obtain NULL.

Return type

FLOAT64

Example

The following example uses ST_X and ST_Y to extract coordinates from single-point geographies.

WITH points AS
   (SELECT ST_GEOGPOINT(i, i + 1) AS p FROM UNNEST([0, 5, 12]) AS i)
 SELECT
   p,
   ST_X(p) as longitude,
   ST_Y(p) as latitude
FROM points;

+--------------+-----------+----------+
| p            | longitude | latitude |
+--------------+-----------+----------+
| POINT(0 1)   | 0.0       | 1.0      |
| POINT(5 6)   | 5.0       | 6.0      |
| POINT(12 13) | 12.0      | 13.0     |
+--------------+-----------+----------+

ST_Y

ST_Y(geography_expression)

Description

Returns the latitude in degrees of the single-point input GEOGRAPHY.

For any input GEOGRAPHY that is not a single point, including an empty GEOGRAPHY, ST_Y returns an error. Use the SAFE. prefix to return NULL instead.

Return type

FLOAT64

Example

See ST_X for example usage.

Security functions

BigQuery supports the following security functions.

SESSION_USER

SESSION_USER()

Description

Returns the email address of the user that is running the query.

Return Data Type

STRING

Example

SELECT SESSION_USER() as user;

+----------------------+
| user                 |
+----------------------+
|      |
+----------------------+

Utility functions

BigQuery supports the following utility functions.

GENERATE_UUID

GENERATE_UUID()

Description

Returns a random universally unique identifier (UUID) as a STRING. The returned STRING consists of 32 hexadecimal digits in five groups separated by hyphens in the form 8-4-4-4-12. The hexadecimal digits represent 122 random bits and 6 fixed bits, in compliance with RFC 4122 section 4.4. The returned STRING is lowercase.

Return Data Type

STRING

Example

The following query generates a random UUID.

SELECT GENERATE_UUID() AS uuid;

+--------------------------------------+
| uuid                                 |
+--------------------------------------+
| 4192bff0-e1e0-43ce-a4db-912808c32493 |
+--------------------------------------+

Net functions

NET.IP_FROM_STRING

NET.IP_FROM_STRING(addr_str)

Description

Converts an IPv4 or IPv6 address from text (STRING) format to binary (BYTES) format in network byte order.

This function supports the following formats for addr_str:

  • IPv4: Dotted-quad format. For example, 10.1.2.3.
  • IPv6: Colon-separated format. For example, 1234:5678:90ab:cdef:1234:5678:90ab:cdef. For more examples, see the IP Version 6 Addressing Architecture.

This function does not support CIDR notation, such as 10.1.2.3/32.

If this function receives a NULL input, it returns NULL. If the input is considered invalid, an OUT_OF_RANGE error occurs.

Return Data Type

BYTES

Example

SELECT
  addr_str, FORMAT("%T", NET.IP_FROM_STRING(addr_str)) AS ip_from_string
FROM UNNEST([
  '48.49.50.51',
  '::1',
  '3031:3233:3435:3637:3839:4041:4243:4445',
  '::ffff:192.0.2.128'
]) AS addr_str;
addr_strip_from_string
48.49.50.51 b"0123"
::1 b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"
3031:3233:3435:3637:3839:4041:4243:4445 b"0123456789@ABCDE"
::ffff:192.0.2.128 b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xc0\x00\x02\x80"

NET.SAFE_IP_FROM_STRING

NET.SAFE_IP_FROM_STRING(addr_str)

Description

Similar to NET.IP_FROM_STRING, but returns NULL instead of throwing an error if the input is invalid.

Return Data Type

BYTES

Example

SELECT
  addr_str,
  FORMAT("%T", NET.SAFE_IP_FROM_STRING(addr_str)) AS safe_ip_from_string
FROM UNNEST([
  '48.49.50.51',
  '::1',
  '3031:3233:3435:3637:3839:4041:4243:4445',
  '::ffff:192.0.2.128',
  '48.49.50.51/32',
  '48.49.50',
  '::wxyz'
]) AS addr_str;
addr_strsafe_ip_from_string
48.49.50.51 b"0123"
::1 b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"
3031:3233:3435:3637:3839:4041:4243:4445 b"0123456789@ABCDE"
::ffff:192.0.2.128 b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xc0\x00\x02\x80"
48.49.50.51/32 NULL
48.49.50 NULL
::wxyz NULL

NET.IP_TO_STRING

NET.IP_TO_STRING(addr_bin)

Description Converts an IPv4 or IPv6 address from binary (BYTES) format in network byte order to text (STRING) format.

If the input is 4 bytes, this function returns an IPv4 address as a STRING. If the input is 16 bytes, it returns an IPv6 address as a STRING.

If this function receives a NULL input, it returns NULL. If the input has a length different from 4 or 16, an OUT_OF_RANGE error occurs.

Return Data Type

STRING

Example

SELECT FORMAT("%T", x) AS addr_bin, NET.IP_TO_STRING(x) AS ip_to_string
FROM UNNEST([
  b"0123",
  b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01",
  b"0123456789@ABCDE",
  b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xc0\x00\x02\x80"
]) AS x;
addr_binip_to_string
b"0123" 48.49.50.51
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01" ::1
b"0123456789@ABCDE" 3031:3233:3435:3637:3839:4041:4243:4445
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xc0\x00\x02\x80" ::ffff:192.0.2.128

NET.IP_NET_MASK

NET.IP_NET_MASK(num_output_bytes, prefix_length)

Description

Returns a network mask: a byte sequence with length equal to num_output_bytes, where the first prefix_length bits are set to 1 and the other bits are set to 0. num_output_bytes and prefix_length are INT64. This function throws an error if num_output_bytes is not 4 (for IPv4) or 16 (for IPv6). It also throws an error if prefix_length is negative or greater than 8 * num_output_bytes.

Return Data Type

BYTES

Example

SELECT x, y, FORMAT("%T", NET.IP_NET_MASK(x, y)) AS ip_net_mask
FROM UNNEST([
  STRUCT(4 as x, 0 as y),
  (4, 20),
  (4, 32),
  (16, 0),
  (16, 1),
  (16, 128)
]);
xyip_net_mask
4 0 b"\x00\x00\x00\x00"
4 20 b"\xff\xff\xf0\x00"
4 32 b"\xff\xff\xff\xff"
16 0 b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
16 1 b"\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
16 128 b"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"

NET.IP_TRUNC

NET.IP_TRUNC(addr_bin, prefix_length)

Description Takes addr_bin, an IPv4 or IPv6 address in binary (BYTES) format in network byte order, and returns a subnet address in the same format. The result has the same length as addr_bin, where the first prefix_length bits are equal to those in addr_bin and the remaining bits are 0.

This function throws an error if LENGTH(addr_bin) is not 4 or 16, or if prefix_len is negative or greater than LENGTH(addr_bin) * 8.

Return Data Type

BYTES

Example

SELECT
  FORMAT("%T", x) as addr_bin, prefix_length,
  FORMAT("%T", NET.IP_TRUNC(x, prefix_length)) AS ip_trunc
FROM UNNEST([
  STRUCT(b"\xAA\xBB\xCC\xDD" as x, 0 as prefix_length),
  (b"\xAA\xBB\xCC\xDD", 11), (b"\xAA\xBB\xCC\xDD", 12),
  (b"\xAA\xBB\xCC\xDD", 24), (b"\xAA\xBB\xCC\xDD", 32),
  (b'0123456789@ABCDE', 80)
]);
addr_binprefix_lengthip_trunc
b"\xaa\xbb\xcc\xdd" 0 b"\x00\x00\x00\x00"
b"\xaa\xbb\xcc\xdd" 11 b"\xaa\xa0\x00\x00"
b"\xaa\xbb\xcc\xdd" 12 b"\xaa\xb0\x00\x00"
b"\xaa\xbb\xcc\xdd" 24 b"\xaa\xbb\xcc\x00"
b"\xaa\xbb\xcc\xdd" 32 b"\xaa\xbb\xcc\xdd"
b"0123456789@ABCDE" 80 b"0123456789\x00\x00\x00\x00\x00\x00"

NET.IPV4_FROM_INT64

NET.IPV4_FROM_INT64(integer_value)

Description

Converts an IPv4 address from integer format to binary (BYTES) format in network byte order. In the integer input, the least significant bit of the IP address is stored in the least significant bit of the integer, regardless of host or client architecture. For example, 1 means 0.0.0.1, and 0x1FF means 0.0.1.255.

This function checks that either all the most significant 32 bits are 0, or all the most significant 33 bits are 1 (sign-extended from a 32-bit integer). In other words, the input should be in the range [-0x80000000, 0xFFFFFFFF]; otherwise, this function throws an error.

This function does not support IPv6.

Return Data Type

BYTES

Example

SELECT x, x_hex, FORMAT("%T", NET.IPV4_FROM_INT64(x)) AS ipv4_from_int64
FROM (
  SELECT CAST(x_hex AS INT64) x, x_hex
  FROM UNNEST(["0x0", "0xABCDEF", "0xFFFFFFFF", "-0x1", "-0x2"]) AS x_hex
);
xx_hexipv4_from_int64
0 0x0 b"\x00\x00\x00\x00"
11259375 0xABCDEF b"\x00\xab\xcd\xef"
4294967295 0xFFFFFFFF b"\xff\xff\xff\xff"
-1 -0x1 b"\xff\xff\xff\xff"
-2 -0x2 b"\xff\xff\xff\xfe"

NET.IPV4_TO_INT64

NET.IPV4_TO_INT64(addr_bin)

Description

Converts an IPv4 address from binary (BYTES) format in network byte order to integer format. In the integer output, the least significant bit of the IP address is stored in the least significant bit of the integer, regardless of host or client architecture. For example, 1 means 0.0.0.1, and 0x1FF means 0.0.1.255. The output is in the range [0, 0xFFFFFFFF].

If the input length is not 4, this function throws an error.

This function does not support IPv6.

Return Data Type

INT64

Example

SELECT
  FORMAT("%T", x) AS addr_bin,
  FORMAT("0x%X", NET.IPV4_TO_INT64(x)) AS ipv4_to_int64
FROM
UNNEST([b"\x00\x00\x00\x00", b"\x00\xab\xcd\xef", b"\xff\xff\xff\xff"]) AS x;
addr_binipv4_to_int64
b"\x00\x00\x00\x00" 0x0
b"\x00\xab\xcd\xef" 0xABCDEF
b"\xff\xff\xff\xff" 0xFFFFFFFF

NET.HOST

NET.HOST(url)

Description

Takes a URL as a STRING and returns the host as a STRING. For best results, URL values should comply with the format as defined by RFC 3986. If the URL value does not comply with RFC 3986 formatting, this function makes a best effort to parse the input and return a relevant result. If the function cannot parse the input, it returns NULL.

Note: The function does not perform any normalization.

Return Data Type

STRING

Example

SELECT
  FORMAT("%T", input) AS input,
  description,
  FORMAT("%T", NET.HOST(input)) AS host,
  FORMAT("%T", NET.PUBLIC_SUFFIX(input)) AS suffix,
  FORMAT("%T", NET.REG_DOMAIN(input)) AS domain
FROM (
  SELECT "" AS input, "invalid input" AS description
  UNION ALL SELECT "http://abc.xyz", "standard URL"
  UNION ALL SELECT "//user::80/path?query",
                   "standard URL with relative scheme, port, path and query, but no public suffix"
  UNION ALL SELECT "https://[::1]:80", "standard URL with IPv6 host"
  UNION ALL SELECT "http://例子.卷筒纸.中国", "standard URL with internationalized domain name"
  UNION ALL SELECT "    www.Example.Co.UK    ",
                   "non-standard URL with spaces, upper case letters, and without scheme"
  UNION ALL SELECT "mailto:?to=&subject=&body=", "URI rather than URL--unsupported"
);
inputdescriptionhostsuffixdomain
"" invalid input NULL NULL NULL
"http://abc.xyz" standard URL "abc.xyz" "xyz" "abc.xyz"
"//user::80/path?query" standard URL with relative scheme, port, path and query, but no public suffix "a.b" NULL NULL
"https://[::1]:80" standard URL with IPv6 host "[::1]" NULL NULL
"http://例子.卷筒纸.中国" standard URL with internationalized domain name "例子.卷筒纸.中国" "中国" "卷筒纸.中国"
"    www.Example.Co.UK    " non-standard URL with spaces, upper case letters, and without scheme "www.Example.Co.UK" "Co.UK" "Example.Co.UK"
"mailto:?to=&subject=&body=" URI rather than URL--unsupported "mailto" NULL NULL

NET.PUBLIC_SUFFIX

NET.PUBLIC_SUFFIX(url)

Description

Takes a URL as a STRING and returns the public suffix (such as com, org, or net) as a STRING. A public suffix is an ICANN domain registered at publicsuffix.org. For best results, URL values should comply with the format as defined by RFC 3986. If the URL value does not comply with RFC 3986 formatting, this function makes a best effort to parse the input and return a relevant result.

This function returns NULL if any of the following is true:

  • It cannot parse the host from the input;
  • The parsed host contains adjacent dots in the middle (not leading or trailing);
  • The parsed host does not contain any public suffix.

Before looking up the public suffix, this function temporarily normalizes the host by converting upper case English letters to lower case and encoding all non-ASCII characters with Punycode. The function then returns the public suffix as part of the original host instead of the normalized host.

Note: The function does not perform Unicode normalization.

Note: The public suffix data at publicsuffix.org also contains private domains. This function ignores the private domains.

Note: The public suffix data may change over time. Consequently, input that produces a NULL result now may produce a non-NULL value in the future.

Return Data Type

STRING

Example

SELECT
  FORMAT("%T", input) AS input,
  description,
  FORMAT("%T", NET.HOST(input)) AS host,
  FORMAT("%T", NET.PUBLIC_SUFFIX(input)) AS suffix,
  FORMAT("%T", NET.REG_DOMAIN(input)) AS domain
FROM (
  SELECT "" AS input, "invalid input" AS description
  UNION ALL SELECT "http://abc.xyz", "standard URL"
  UNION ALL SELECT "//user::80/path?query",
                   "standard URL with relative scheme, port, path and query, but no public suffix"
  UNION ALL SELECT "https://[::1]:80", "standard URL with IPv6 host"
  UNION ALL SELECT "http://例子.卷筒纸.中国", "standard URL with internationalized domain name"
  UNION ALL SELECT "    www.Example.Co.UK    ",
                   "non-standard URL with spaces, upper case letters, and without scheme"
  UNION ALL SELECT "mailto:?to=&subject=&body=", "URI rather than URL--unsupported"
);
inputdescriptionhostsuffixdomain
"" invalid input NULL NULL NULL
"http://abc.xyz" standard URL "abc.xyz" "xyz" "abc.xyz"
"//user::80/path?query" standard URL with relative scheme, port, path and query, but no public suffix "a.b" NULL NULL
"https://[::1]:80" standard URL with IPv6 host "[::1]" NULL NULL
"http://例子.卷筒纸.中国" standard URL with internationalized domain name "例子.卷筒纸.中国" "中国" "卷筒纸.中国"
"    www.Example.Co.UK    " non-standard URL with spaces, upper case letters, and without scheme "www.Example.Co.UK" "Co.UK" "Example.Co.UK
"mailto:?to=&subject=&body=" URI rather than URL--unsupported "mailto" NULL NULL

NET.REG_DOMAIN

NET.REG_DOMAIN(url)

Description

Takes a URL as a STRING and returns the registered or registerable domain (the public suffix plus one preceding label), as a STRING. For best results, URL values should comply with the format as defined by RFC 3986. If the URL value does not comply with RFC 3986 formatting, this function makes a best effort to parse the input and return a relevant result.

This function returns NULL if any of the following is true:

  • It cannot parse the host from the input;
  • The parsed host contains adjacent dots in the middle (not leading or trailing);
  • The parsed host does not contain any public suffix;
  • The parsed host contains only a public suffix without any preceding label.

Before looking up the public suffix, this function temporarily normalizes the host by converting upper case English letters to lowercase and encoding all non-ASCII characters with Punycode. The function then returns the registered or registerable domain as part of the original host instead of the normalized host.

Note: The function does not perform Unicode normalization.

Note: The public suffix data at publicsuffix.org also contains private domains. This function does not treat a private domain as a public suffix. For example, if "us.com" is a private domain in the public suffix data, NET.REG_DOMAIN("foo.us.com") returns "us.com" (the public suffix "com" plus the preceding label "us") rather than "foo.us.com" (the private domain "us.com" plus the preceding label "foo").

Note: The public suffix data may change over time. Consequently, input that produces a NULL result now may produce a non-NULL value in the future.

Return Data Type

STRING

Example

SELECT
  FORMAT("%T", input) AS input,
  description,
  FORMAT("%T", NET.HOST(input)) AS host,
  FORMAT("%T", NET.PUBLIC_SUFFIX(input)) AS suffix,
  FORMAT("%T", NET.REG_DOMAIN(input)) AS domain
FROM (
  SELECT "" AS input, "invalid input" AS description
  UNION ALL SELECT "http://abc.xyz", "standard URL"
  UNION ALL SELECT "//user::80/path?query",
                   "standard URL with relative scheme, port, path and query, but no public suffix"
  UNION ALL SELECT "https://[::1]:80", "standard URL with IPv6 host"
  UNION ALL SELECT "http://例子.卷筒纸.中国", "standard URL with internationalized domain name"
  UNION ALL SELECT "    www.Example.Co.UK    ",
                   "non-standard URL with spaces, upper case letters, and without scheme"
  UNION ALL SELECT "mailto:?to=&subject=&body=", "URI rather than URL--unsupported"
);
inputdescriptionhostsuffixdomain
"" invalid input NULL NULL NULL
"http://abc.xyz" standard URL "abc.xyz" "xyz" "abc.xyz"
"//user::80/path?query" standard URL with relative scheme, port, path and query, but no public suffix "a.b" NULL NULL
"https://[::1]:80" standard URL with IPv6 host "[::1]" NULL NULL
"http://例子.卷筒纸.中国" standard URL with internationalized domain name "例子.卷筒纸.中国" "中国" "卷筒纸.中国"
"    www.Example.Co.UK    " non-standard URL with spaces, upper case letters, and without scheme "www.Example.Co.UK" "Co.UK" "Example.Co.UK"
"mailto:?to=&subject=&body=" URI rather than URL--unsupported "mailto" NULL NULL

Debugging functions

BigQuery supports the following debugging functions.

ERROR

ERROR(error_message)

Description

Returns an error. The error_message argument is a STRING.

BigQuery treats ERROR in the same way as any expression that may result in an error: there is no special guarantee of evaluation order.

Return Data Type

BigQuery infers the return type in context.

Examples

In the following example, the query returns an error message if the value of the row does not match one of two defined values.

SELECT
  CASE
    WHEN value = 'foo' THEN 'Value is foo.'
    WHEN value = 'bar' THEN 'Value is bar.'
    ELSE ERROR(CONCAT('Found unexpected value: ', value))
  END AS new_value
FROM (
  SELECT 'foo' AS value UNION ALL
  SELECT 'bar' AS value UNION ALL
  SELECT 'baz' AS value);

-- Found unexpected value: baz

In the following example, BigQuery may evaluate the ERROR function before or after the x > 0 condition, because BigQuery generally provides no ordering guarantees between WHERE clause conditions and there are no special guarantees for the ERROR function.

SELECT *
FROM (SELECT -1 AS x)
WHERE x > 0 AND ERROR('Example error');

In the next example, the WHERE clause evaluates an IF condition, which ensures that BigQuery only evaluates the ERROR function if the condition fails.

SELECT *
FROM (SELECT -1 AS x)
WHERE IF(x > 0, true, ERROR(FORMAT('Error: x must be positive but is %t', x)));

-- Error: x must be positive but is -1

AEAD encryption functions

The following sections describe the AEAD encryption functions that BigQuery supports. For a description of how the AEAD encryption functions work, see AEAD encryption concepts.

KEYS.NEW_KEYSET

KEYS.NEW_KEYSET(key_type)

Description

Returns a serialized keyset containing a new key based on key_type. The returned keyset is a serialized BYTES representation of google.crypto.tink.Keyset that contains a primary cryptographic key and no additional keys. You can use the keyset with the AEAD.ENCRYPT, AEAD.DECRYPT_BYTES, and AEAD.DECRYPT_STRING functions for encryption and decryption, as well as with the KEYS group of key- and keyset-related functions.

key_type is a STRING literal representation of the type of key to create. key_type cannot be NULL. key_type can be:

  • AEAD_AES_GCM_256: Creates a 256-bit key with the pseudo-random number generator provided by boringSSL. The key uses AES-GCM for encryption and decryption operations.
  • DETERMINISTIC_AEAD_AES_SIV_CMAC_256: Creates a 512-bit AES-SIV-CMAC key, which contains a 256-bit AES-CTR key and 256-bit AES-CMAC key. The AES-SIV-CMAC key is created with the pseudo-random number generator provided by boringSSL. The key uses AES-SIV for encryption and decryption operations.

Return Data Type

BYTES

Example

The following query creates a keyset for each row in CustomerIds, which can subsequently be used to encrypt data. Each keyset contains a single encryption key with randomly-generated key data. Each row in the output contains a customer_id and an 'AEAD_AES_GCM_256' key in BYTES.

SELECT customer_id, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset
FROM (
  SELECT 1 AS customer_id UNION ALL
  SELECT 2 UNION ALL
  SELECT 3
) AS CustomerIds;

KEYS.ADD_KEY_FROM_RAW_BYTES

KEYS.ADD_KEY_FROM_RAW_BYTES(keyset, key_type, raw_key_bytes)

Description

Returns a serialized keyset as BYTES with the addition of a key to keyset based on key_type and raw_key_bytes.

The primary cryptographic key remains the same as in keyset. The expected length of raw_key_bytes depends on the value of key_type. The following are supported key_types:

  • 'AES_CBC_PKCS': Creates a key for AES decryption using cipher block chaining and PKCS padding. raw_key_bytes is expected to be a raw key BYTES value of length 16, 24, or 32; these lengths have sizes of 128, 192, and 256 bits, respectively. BigQuery AEAD functions do not support keys of these types for encryption; instead, prefer 'AEAD_AES_GCM_256' or 'AES_GCM' keys.
  • 'AES_GCM': Creates a key for AES decryption or encryption using Galois/Counter Mode. raw_key_bytes must be a raw key BYTES value of length 16 or 32; these lengths have sizes of 128 and 256 bits, respectively. When keys of this type are inputs to AEAD.ENCRYPT, the output ciphertext does not have a Tink-specific prefix indicating which key was used as input.

Return Data Type

BYTES

Example

The following query creates a table of customer IDs along with raw key bytes, called CustomerRawKeys, and a table of unique IDs, called CustomerIds. It creates a new 'AEAD_AES_GCM_256' keyset for each customer_id; then it adds a new key to each keyset, using the raw_key_bytes value corresponding to that customer_id. The output is a table where each row contains a customer_id and a keyset in BYTES, which contains the raw key added using KEYS.ADD_KEY_FROM_RAW_BYTES.

WITH CustomerRawKeys AS (
  SELECT 1 AS customer_id, b'0123456789012345' AS raw_key_bytes UNION ALL
  SELECT 2, b'9876543210543210' UNION ALL
  SELECT 3, b'0123012301230123'
), CustomerIds AS (
  SELECT 1 AS customer_id UNION ALL
  SELECT 2 UNION ALL
  SELECT 3
)
SELECT
  ci.customer_id,
  KEYS.ADD_KEY_FROM_RAW_BYTES(
    KEYS.NEW_KEYSET('AEAD_AES_GCM_256'),
    'AES_CBC_PKCS',
    (SELECT raw_key_bytes FROM CustomerRawKeys AS crk
     WHERE crk.customer_id = ci.customer_id)
  ) AS keyset
FROM CustomerIds AS ci;

The output keysets each contain two things: the primary cryptographic key created using KEYS.NEW_KEYSET('AEAD_AES_GCM_256'), and the raw key added using KEYS.ADD_KEY_FROM_RAW_BYTES. If a keyset in the output is used with AEAD.ENCRYPT, BigQuery uses the primary cryptographic key created using KEYS.NEW_KEYSET('AEAD_AES_GCM_256') to encrypt the input plaintext. If the keyset is used with AEAD.DECRYPT_STRING or AEAD.DECRYPT_BYTES, BigQuery returns the resulting plaintext if either key succeeds in decrypting the ciphertext.

AEAD.DECRYPT_BYTES

AEAD.DECRYPT_BYTES(keyset, ciphertext, additional_data)

Description

Uses the matching key from keyset to decrypt ciphertext and verifies the integrity of the data using additional_data. Returns an error if decryption or verification fails.

keyset is a serialized BYTES value returned by one of the KEYS functions or a STRUCT returned by KEYS.KEYSET_CHAIN. keyset must contain the key that was used to encrypt ciphertext, and the key must be in an 'ENABLED' state, or else the function returns an error. AEAD.DECRYPT_BYTES identifies the matching key in keyset by finding the key with the key ID that matches the one encrypted in ciphertext.

ciphertext is a BYTES value that is the result of a call to AEAD.ENCRYPT where the input plaintext was of type BYTES.

If ciphertext includes an initialization vector (IV), it should be the first bytes of ciphertext. If ciphertext includes an authentication tag, it should be the last bytes of ciphertext. If the IV and authentic tag are one (SIV), it should be the first bytes of ciphertext. The IV and authentication tag commonly require 16 bytes, but may vary in size.

additional_data is a STRING or BYTES value that ensures the authenticity and integrity of the encrypted data. This function casts any STRING value to BYTES. This must be the same as the additional_data provided to AEAD.ENCRYPT to encrypt ciphertext, ignoring its type, or else the function returns an error.

Return Data Type

BYTES

Example

This example creates a table of unique IDs with associated plaintext values and keysets. Then it uses these keysets to encrypt the plaintext values as BYTES and store them in a new table. Finally, it uses AEAD.DECRYPT_BYTES to decrypt the encrypted values and display them as plaintext.

The following statement creates a table CustomerKeysets containing a column of unique IDs, a column of AEAD_AES_GCM_256 keysets, and a column of favorite animals.

CREATE TABLE aead.CustomerKeysets AS
SELECT
  1 AS customer_id,
  KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset,
  b'jaguar' AS favorite_animal
UNION ALL
SELECT
  2 AS customer_id,
  KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset,
  b'zebra' AS favorite_animal
UNION ALL
SELECT
  3 AS customer_id,
  KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset,
  b'nautilus' AS favorite_animal;

The following statement creates a table EncryptedCustomerData containing a column of unique IDs and a column of ciphertext. The statement encrypts the plaintext favorite_animal using the keyset value from CustomerKeysets corresponding to each unique ID.

CREATE TABLE aead.EncryptedCustomerData AS
SELECT
  customer_id,
  AEAD.ENCRYPT(keyset, favorite_animal, CAST(CAST(customer_id AS STRING) AS BYTES))
   AS encrypted_animal
FROM
  aead.CustomerKeysets AS ck;

The following query uses the keysets in the CustomerKeysets table to decrypt data in the EncryptedCustomerData table.

SELECT
  ecd.customer_id,
  AEAD.DECRYPT_BYTES(
    (SELECT ck.keyset
     FROM aead.CustomerKeysets AS ck
     WHERE ecd.customer_id = ck.customer_id),
    ecd.encrypted_animal,
    CAST(CAST(customer_id AS STRING) AS BYTES)
  ) AS favorite_animal
FROM aead.EncryptedCustomerData AS ecd;

AEAD.DECRYPT_STRING

AEAD.DECRYPT_STRING(keyset, ciphertext, additional_data)

Description

Like AEAD.DECRYPT_BYTES, but where plaintext is of type STRING.

Return Data Type

STRING

AEAD.ENCRYPT

AEAD.ENCRYPT(keyset, plaintext, additional_data)

Description

Encrypts plaintext using the primary cryptographic key in keyset. The algorithm of the primary key must be AEAD_AES_GCM_256. Incorporates additional_data into the returned ciphertext. Returns NULL if any input is NULL.

keyset is a serialized BYTES value returned by one of the KEYS functions or a STRUCT returned by KEYS.KEYSET_CHAIN.

plaintext is the STRING or BYTES value to be encrypted.

additional_data is a STRING or BYTES value to incorporate into the returned ciphertext. plaintext and additional_data must be of the same type. AEAD.ENCRYPT(keyset, string1, string2) is equivalent to AEAD.ENCRYPT(keyset, CAST(string1 AS BYTES), CAST(string2 AS BYTES)).

The output is ciphertext BYTES. The ciphertext contains a Tink-specific prefix indicating the key used to perform the encryption.

Return Data Type

BYTES

Example

The following query uses the keysets for each customer_id in the CustomerKeysets table to encrypt the value of the plaintext favorite_animal in the PlaintextCustomerData table corresponding to that customer_id. The output contains a column of customer_id values and a column of corresponding ciphertext output as BYTES.

WITH CustomerKeysets AS (
  SELECT 1 AS customer_id, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset UNION ALL
  SELECT 2, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') UNION ALL
  SELECT 3, KEYS.NEW_KEYSET('AEAD_AES_GCM_256')
), PlaintextCustomerData AS (
  SELECT 1 AS customer_id, 'elephant' AS favorite_animal UNION ALL
  SELECT 2, 'walrus' UNION ALL
  SELECT 3, 'leopard'
)
SELECT
  pcd.customer_id,
  AEAD.ENCRYPT(
    (SELECT keyset
     FROM CustomerKeysets AS ck
     WHERE ck.customer_id = pcd.customer_id),
    pcd.favorite_animal,
    CAST(pcd.customer_id AS STRING)
  ) AS encrypted_animal
FROM PlaintextCustomerData AS pcd;

DETERMINISTIC_DECRYPT_BYTES

DETERMINISTIC_DECRYPT_BYTES(keyset, ciphertext, additional_data)

Description

Uses the matching key from keyset to decrypt ciphertext and verifies the integrity of the data using additional_data. Returns an error if decryption fails.

keyset is a serialized BYTES value or a STRUCT value returned by one of the KEYS functions. keyset must contain the key that was used to encrypt ciphertext, the key must be in an 'ENABLED' state, and the key must be of type DETERMINISTIC_AEAD_AES_SIV_CMAC_256, or else the function returns an error. DETERMINISTIC_DECRYPT_BYTES identifies the matching key in keyset by finding the key with the key ID that matches the one encrypted in ciphertext.

ciphertext is a BYTES value that is the result of a call to DETERMINISTIC_ENCRYPT where the input plaintext was of type BYTES.

The ciphertext must follow Tink's wire format. The first byte of ciphertext should contain a Tink key version followed by a 4 byte key hint. If ciphertext includes an initialization vector (IV), it should be the next bytes of ciphertext. If ciphertext includes an authentication tag, it should be the last bytes of ciphertext. If the IV and authentic tag are one (SIV), it should be the first bytes of ciphertext. The IV and authentication tag commonly require 16 bytes, but may vary in size.

additional_data is a STRING or BYTES value that binds the ciphertext to its context. This forces the ciphertext to be decrypted in the same context which it was encrypted. This function casts any STRING value to BYTES. This must be the same as the additional_data provided to DETERMINISTIC_ENCRYPT to encrypt ciphertext, ignoring its type, or else the function returns an error.

Return Data Type

BYTES

Example

This example creates a table of unique IDs with associated plaintext values and keysets. Then it uses these keysets to encrypt the plaintext values as BYTES and store them in a new table. Finally, it uses DETERMINISTIC_DECRYPT_BYTES to decrypt the encrypted values and display them as plaintext.

The following statement creates a table CustomerKeysets containing a column of unique IDs, a column of DETERMINISTIC_AEAD_AES_SIV_CMAC_256 keysets, and a column of favorite animals.

CREATE TABLE deterministic.CustomerKeysets AS
SELECT
  1 AS customer_id,
  KEYS.NEW_KEYSET('DETERMINISTIC_AEAD_AES_SIV_CMAC_256') AS keyset,
  b'jaguar' AS favorite_animal
UNION ALL
SELECT
  2 AS customer_id,
  KEYS.NEW_KEYSET('DETERMINISTIC_AEAD_AES_SIV_CMAC_256') AS keyset,
  b'zebra' AS favorite_animal
UNION ALL
SELECT
  3 AS customer_id,
  KEYS.NEW_KEYSET('DETERMINISTIC_AEAD_AES_SIV_CMAC_256') AS keyset,
  b'nautilus' AS favorite_animal;

The following statement creates a table EncryptedCustomerData containing a column of unique IDs and a column of ciphertext. The statement encrypts the plaintext favorite_animal using the keyset value from CustomerKeysets corresponding to each unique ID.

CREATE TABLE deterministic.EncryptedCustomerData AS
SELECT
  customer_id,
  DETERMINISTIC_ENCRYPT(ck.keyset, favorite_animal, CAST(CAST(customer_id AS STRING) AS BYTES))
   AS encrypted_animal
FROM
  deterministic.CustomerKeysets AS ck;

The following query uses the keysets in the CustomerKeysets table to decrypt data in the EncryptedCustomerData table.

SELECT
  ecd.customer_id,
  DETERMINISTIC_DECRYPT_BYTES(
    (SELECT ck.keyset
     FROM deterministic.CustomerKeysets AS ck
     WHERE ecd.customer_id = ck.customer_id),
    ecd.encrypted_animal,
    CAST(CAST(ecd.customer_id AS STRING) AS BYTES)
  ) AS favorite_animal
FROM deterministic.EncryptedCustomerData AS ecd;

DETERMINISTIC_DECRYPT_STRING

DETERMINISTIC_DECRYPT_STRING(keyset, ciphertext, additional_data)

Description

Like DETERMINISTIC_DECRYPT_BYTES, but where plaintext is of type STRING.

Return Data Type

STRING

DETERMINISTIC_ENCRYPT

DETERMINISTIC_ENCRYPT(keyset, plaintext, additional_data)

Description

Encrypts plaintext using the primary cryptographic key in keyset using deterministic AEAD. The algorithm of the primary key must be DETERMINISTIC_AEAD_AES_SIV_CMAC_256. Incorporates additional_data into the returned ciphertext. Returns NULL if any input is NULL.

keyset is a serialized BYTES value or a STRUCT value returned by one of the KEYS functions.

plaintext is the STRING or BYTES value to be encrypted.

additional_data is a STRING or BYTES value to incorporate into the returned ciphertext. plaintext and additional_data must be of the same type. DETERMINISTIC_ENCRYPT(keyset, string1, string2) is equivalent to DETERMINISTIC_ENCRYPT(keyset, CAST(string1 AS BYTES), CAST(string2 AS BYTES)).

The output is ciphertext BYTES. The ciphertext contains a Tink-specific prefix indicating the key used to perform the encryption. Given an identical keyset and plaintext, this function returns the same ciphertext each time it is invoked (including across queries).

Return Data Type

BYTES

Example

The following query uses the keysets for each customer_id in the CustomerKeysets table to encrypt the value of the plaintext favorite_animal in the PlaintextCustomerData table corresponding to that customer_id. The output contains a column of customer_id values and a column of corresponding ciphertext output as BYTES.

WITH CustomerKeysets AS (
  SELECT 1 AS customer_id,
  KEYS.NEW_KEYSET('DETERMINISTIC_AEAD_AES_SIV_CMAC_256') AS keyset UNION ALL
  SELECT 2, KEYS.NEW_KEYSET('DETERMINISTIC_AEAD_AES_SIV_CMAC_256') UNION ALL
  SELECT 3, KEYS.NEW_KEYSET('DETERMINISTIC_AEAD_AES_SIV_CMAC_256')
), PlaintextCustomerData AS (
  SELECT 1 AS customer_id, 'elephant' AS favorite_animal UNION ALL
  SELECT 2, 'walrus' UNION ALL
  SELECT 3, 'leopard'
)
SELECT
  pcd.customer_id,
  DETERMINISTIC_ENCRYPT(
    (SELECT keyset
     FROM CustomerKeysets AS ck
     WHERE ck.customer_id = pcd.customer_id),
    pcd.favorite_animal,
    CAST(pcd.customer_id AS STRING)
  ) AS encrypted_animal
FROM PlaintextCustomerData AS pcd;

KEYS.KEYSET_CHAIN

KEYS.KEYSET_CHAIN(kms_resource_name, first_level_keyset)

Description

Can be used in place of the keyset argument to the AEAD and deterministic encryption functions to pass a keyset that is encrypted with a Cloud KMS key. This lets you use AEAD functions without including plaintext keys in a query.

kms_resource_name is a STRING value that contains the resource path to the Cloud KMS key used to decrypt first_level_keyset. The full string must begin with gcp-kms:// and be in the following format: gcp-kms://projects/{id}/locations/{location}/keyRings/{id}/cryptoKeys/{id}. The Cloud KMS key must reside in the same Cloud region as the query.

first_level_keyset is a BYTES value containing the ciphertext produced by encrypting a serialized Tink keyset with the specified KMS key.

Both kms_resource_name and first_level_keyset must be constant values.

Return Data Type

STRUCT

Example

This example creates a table of example data, then shows how to encrypt that data using a wrapped (encrypted) keyset. Finally it shows how to query the encrypted version of the data.

The following statement creates a table RawCustomerData containing a column of customer ids and a column of favorite animals.

CREATE TABLE aead.RawCustomerData AS
SELECT
  1 AS customer_id,
  b'jaguar' AS favorite_animal
UNION ALL
SELECT
  2 AS customer_id,
  b'zebra' AS favorite_animal
UNION ALL
SELECT
  3 AS customer_id,
  b'zebra' AS favorite_animal;

The following statement creates a table EncryptedCustomerData containing a column of unique IDs and a column of ciphertext. The statement encrypts the plaintext favorite_animal using the first_level_keyset provided.

SET kms_resource_name = 'gcp-kms://projects/my-project/locations/us/keyRings/my-key-ring/cryptoKeys/my-crypto-key';
SET first_level_keyset = b'\012\044\000\107\275\360\176\264\206\332\235\215\304...';

CREATE TABLE aead.EncryptedCustomerData AS
SELECT
  customer_id,
  AEAD.ENCRYPT(
    KEYS.KEYSET_CHAIN(kms_resource_name, first_level_keyset),
    favorite_animal,
    CAST(CAST(customer_id AS STRING) AS BYTES)
  ) AS encrypted_animal
FROM
  aead.RawCustomerData;

The following query uses the first_level_keyset to decrypt data in the EncryptedCustomerData table.

SET kms_resource_name = 'gcp-kms://projects/my-project/locations/us/keyRings/my-key-ring/cryptoKeys/my-crypto-key';
SET first_level_keyset = b'\012\044\000\107\275\360\176\264\206\332\235\215\304...';

SELECT
  customer_id,
  AEAD.DECRYPT_BYTES(
    KEYS.KEYSET_CHAIN(kms_resource_name, first_level_keyset)
    encrypted_animal,
    CAST(CAST(customer_id AS STRING) AS BYTES)
  ) AS favorite_animal
FROM aead.EncryptedCustomerData;

The previous two steps also work with the DETERMINISTIC_ENCRYPT and DETERMINISTIC_DECRYPT_BYTES functions. The wrapped keyset must be created using the DETERMINISTIC_AEAD_AES_SIV_CMAC_256 type.

The following statement creates a table EncryptedCustomerData containing a column of unique IDs and a column of ciphertext. The statement encrypts the plaintext favorite_animal using the first_level_keyset provided. You can see that the ciphertext for favorite_animal is the same for customers 2 and 3 since their plaintext favorite_animal is the same.

SET kms_resource_name = 'gcp-kms://projects/my-project/locations/us/keyRings/my-key-ring/cryptoKeys/my-crypto-key';
SET first_level_keyset = b'\012\044\000\107\275\360\176\264\206\332\235\215\304...';

CREATE TABLE daead.EncryptedCustomerData AS
SELECT
  customer_id,
  DETERMINISTC_ENCRYPT(
    KEYS.KEYSET_CHAIN(kms_resource_name, first_level_keyset),
    favorite_animal,
    CAST(CAST(customer_id AS STRING) AS BYTES)
  ) AS encrypted_animal
FROM
  daead.RawCustomerData;

The following query uses the first_level_keyset to decrypt data in the EncryptedCustomerData table.

SET kms_resource_name = 'gcp-kms://projects/my-project/locations/us/keyRings/my-key-ring/cryptoKeys/my-crypto-key';
SET first_level_keyset = b'\012\044\000\107\275\360\176\264\206\332\235\215\304...';

SELECT
  customer_id,
  DETERMINISTIC_DECRYPT_BYTES(
    KEYS.KEYSET_CHAIN(kms_resource_name, first_level_keyset)
    encrypted_animal,
    CAST(CAST(customer_id AS STRING) AS BYTES)
  ) AS favorite_animal
FROM dead.EncryptedCustomerData;

KEYS.KEYSET_FROM_JSON

KEYS.KEYSET_FROM_JSON(json_keyset)

Description

Returns the input json_keyset STRING as serialized BYTES, which is a valid input for other KEYS and AEAD functions. The JSON STRING must be compatible with the definition of the google.crypto.tink.Keyset protocol buffer message: the JSON keyset should be a JSON object containing objects and name-value pairs corresponding to those in the "keyset" message in the google.crypto.tink.Keyset definition. You can convert the output serialized BYTES representation back to a JSON STRING using KEYS.KEYSET_TO_JSON.

Return Data Type

BYTES

Example

KEYS.KEYSET_FROM_JSON takes JSON-formatted STRING values like the following:

{
  "key":[
      {
        "keyData":{
          "keyMaterialType":"SYMMETRIC",
          "typeUrl":"type.googleapis.com/google.crypto.tink.AesGcmKey",
          "value":"GiD80Z8kL6AP3iSNHhqseZGAIvq7TVQzClT7FQy8YwK3OQ=="
        },
        "keyId":3101427138,
        "outputPrefixType":"TINK",
        "status":"ENABLED"
      }
    ],
  "primaryKeyId":3101427138
}

The following query creates a new keyset from a JSON-formatted STRING json_keyset:

SELECT KEYS.KEYSET_FROM_JSON(json_keyset);

This returns the json_keyset serialized as BYTES, like the following:

\x08\x9d\x8e\x85\x82\x09\x12d\x0aX\x0a0
type.googleapis.com/google.crypto.tink.AesGcmKey\x12\"\x1a qX\xe4IG\x87\x1f\xde
\xe3)+e\x98\x0a\x1c}\xfe\x88<\x12\xeb\xc1t\xb8\x83\x1a\xcd\xa8\x97\x84g\x18\x01
\x10\x01\x18\x9d\x8e\x85\x82\x09 \x01

KEYS.KEYSET_TO_JSON

KEYS.KEYSET_TO_JSON(keyset)

Description

Returns a JSON STRING representation of the input keyset. The returned JSON STRING is compatible with the definition of the google.crypto.tink.Keyset protocol buffer message. You can convert the JSON STRING representation back to BYTES using KEYS.KEYSET_FROM_JSON.

Return Data Type

STRING

Example

The following query returns a new 'AEAD_AES_GCM_256' keyset as a JSON-formatted STRING.

SELECT KEYS.KEYSET_TO_JSON(KEYS.NEW_KEYSET('AEAD_AES_GCM_256'));

The result is a STRING like the following.

{
  "key":[
      {
        "keyData":{
          "keyMaterialType":"SYMMETRIC",
          "typeUrl":"type.googleapis.com/google.crypto.tink.AesGcmKey",
          "value":"GiD80Z8kL6AP3iSNHhqseZGAIvq7TVQzClT7FQy8YwK3OQ=="
        },
        "keyId":3101427138,
        "outputPrefixType":"TINK",
        "status":"ENABLED"
      }
    ],
  "primaryKeyId":3101427138
}

KEYS.ROTATE_KEYSET

KEYS.ROTATE_KEYSET(keyset, key_type)

Description

Adds a new key to keyset based on key_type. This new key becomes the primary cryptographic key of the new keyset. Returns the new keyset serialized as BYTES.

The old primary cryptographic key from the input keyset remains an additional key in the returned keyset.

The new key_type must match the key type of existing keys in the keyset.

Return Data Type

BYTES

Example

The following statement creates a table containing a column of unique customer_id values and 'AEAD_AES_GCM_256' keysets. Then, it creates a new primary cryptographic key within each keyset in the source table using KEYS.ROTATE_KEYSET. Each row in the output contains a customer_id and an 'AEAD_AES_GCM_256' keyset in BYTES.

WITH ExistingKeysets AS (
SELECT 1 AS customer_id, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset
    UNION ALL
  SELECT 2, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') UNION ALL
  SELECT 3, KEYS.NEW_KEYSET('AEAD_AES_GCM_256')
)
SELECT customer_id, KEYS.ROTATE_KEYSET(keyset, 'AEAD_AES_GCM_256') AS keyset
FROM ExistingKeysets;

KEYS.KEYSET_LENGTH

KEYS.KEYSET_LENGTH(keyset)

Description

Returns the number of keys in the provided keyset.

Return Data Type

INT64

Example

This example references a JSON-formatted STRING called json_keyset that contains two keys:

{
   "primaryKeyId":1354994251,
   "key":[
      {
         "keyData":{
            "keyMaterialType":"SYMMETRIC",
            "typeUrl":"type.googleapis.com/google.crypto.tink.AesGcmKey",
            "value":"GiD9sxQRgFj4aYN78vaIlxInjZkG/uvyWSY9a8GN+ELV2Q=="
         },
         "keyId":1354994251,
         "outputPrefixType":"TINK",
         "status":"ENABLED"
      }
   ],
   "key":[
      {
         "keyData":{
            "keyMaterialType":"SYMMETRIC",
            "typeUrl":"type.googleapis.com/google.crypto.tink.AesGcmKey",
            "value":"PRn76sxQRgFj4aYN00vaIlxInjZkG/uvyWSY9a2bLRm"
         },
         "keyId":852264701,
         "outputPrefixType":"TINK",
         "status":"DISABLED"
      }
   ]
}

The following query converts json_keyset to a keyset and then returns the number of keys in the keyset:

SELECT KEYS.KEYSET_LENGTH(KEYS.KEYSET_FROM_JSON(json_keyset)) as key_count;

+-----------+
| key_count |
+-----------+
| 2         |
+-----------+

What is a named list of data items that all have the same data type?

An array is a collection of data items, all of the same type, accessed using a common name.

When a method returns an array reference you include ____ with the return type in the method header A B C D?

When returning an array reference, square brackets are included with the return type in the method header.

What is the array name?

Array name is a type of name or a type of any element name that is share by all elements of an array but its indexes are different. Array name handle as a constant pointer, it can never change during execution of a program. Array name is also used to reach its all element.

Is the technique of using the same method name to indicate different implementations?

Polymorphism - "many forms" using the same method name to indicate different implementations. b. When you create a method in the child class that has the same name and parameter list as a method in its parent class, you override the method in the parent class.